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Abstract

An experimental investigation of the effects of angle of attack on hypersonic

boundary-layer stability on a flared-cone model was conducted in the low-disturbance

Mach-6 Nozzle-Test-Chamber Facility at NASA Langley Research Center. This unique

facility provided a "qnief' flow test environment which is well suited for stability

experiments because the low levels of frees_ "noise" minimize artificial stimulation of

flow-disturbance growth. Surface pressure and temperature measurements docUmented the

adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics

were applied to identify the instability mechanisms which lead to transition. In addition,

the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes

computations.

Resultsshow thattheboundary layerbecomes more stableon thewindward my

and lessstableon theleewardray relativetothezero-degreeangle-of-attackcase.The

second-mode instabilitydominatesthe transitionprocessata zero-degreeangleofattack,

however, on thewindward ray atan angleofattackthismode was completelystabilized.

The less-dominantfirst-modeinstabilitywas slightlydestabilizedon thewindward ray.

Non-linearmechanisms suchas saturationand harmonic generationareidentifiedfrom the

flow-disturbance bispectra.
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1 Introduction

The development of efficient hypersonic-flight vehicles of the future will require the

accurate determination of the aerodynamic forces and heat-wansfer rates which are

encountered. Examples of such vehicles include atmospheric re-enU'y spacecraft,

aerobraking orbital-wansfer vehicles, high-altitude aerospace planes, and intercontinental

b_tic missiles. The performance and design of these vehicles strongly depend on the

state of the boundary layer. The boundary layer is the region of flow very close to the

surface where viscous effects dominate the flow physics. This viscous-flow region

naturally evolves from an orderly laminar state to a chaotic turbulent state. The local

aerodynamic-friction force and heat-transfer rate increase considerably when this laminar-

to-turbulent transition occurs. Furthermore, peak-heating rates are often attained within the

transitional region. Thus, predicting the region over which these higher aerodynamic and

thermal loads occur is of crucial importance in determining the overall vehicle loads to

accurately evaluate the vehicle performance. 1

The motivation for conducting boundary-layer stability experiments is derived from

the need to validate numerical prediction methods. Only through validation with reliable

data can confidence be placed in numerical results. Also, stability experiments seek to

increase the understanding of flow physics. Ultimately this new understanding may lead to

improved mathematical models which will extend the capabilities of the predictive tools

used in hypersonic vehicle design. Angie-of-attack effects on a conical model are studied

for the following practical reasons. The conical geometry represents a general

axisymmetric forebody or a slender vehicle. In addition, angle of attack results in transition

asymmetry which may significantly influence the dynamic stability of hypersonic vehicles. 2



1.1 Background

In a low-leveldisturbanceenvironment,and when bypassmechanisms arenot

present,thelaminarboundary layerwillnaturallyevolveintoa turbulentboundary layer.3

The natural-transitionprocessisdescribedby thefollowingsequence ofevents.4 First,

bothbody and ambient disturbancefieldsaregenerated.These initialdisturbancesarethen

modified by thebody flow fieldand aresubsequentlyinternalizedby thebody boundary

layer.This internalizeddisturbancefieldexperienceslinearamplificationwithinthelaminar

boundary layervianormal wave-likemodes. When thesedisturbancesgrow sufficiently,

non-linearinteractionsand spectral-broadeningeffectstakeplace.Finally,theonsetof

transitionisobserved by thefirstappearanceof localizedturbulentregionsintheflow. Ina

high-leveldisturbanceenvironment,however, theabove processmay be bypassed,and

transitionwould occur through otherprocesses.

1.1.1 Theoretical & Computational Tools

The most significantportionofthenatural-transitionprocessisthelinear-

amplification stage of normal-mode disturbances. Linear Stability Theory (LST) is a useful

tool for predicting such amplification at a given streamwise location within a specified

laminar boundary layer. LST is valid within the parallel-flow approximation, which

assumes small mean-flow variations along the streamwise and spanwise directions. A

normal-mode disturbance of the form

O(y) cioc(x-ct) (1.1)

issuperimposed on thelaminar mean-flow solution,where • representsa physicalquantity

such asvelocity,pressure,temperature,or density.This wave-likedisturbancepropagates

alongthe slxcamwise direction,x,and y isthe distancefrom thesurface.The boundary

layerisspecifiedby themean-flow prof'dcsalong they directionofthevelocity,pressure,

temperature,and density.The flow disturbancesofprimary interestherecan be classified

2



as either first or second mode. First-mode disturbances are typically low-frequency

velocity fluctuations. These vortical disturbances dominate the low-speed transition

process. In hypersonic flow, however, second-mode disturbances are also present and

may in fact dominate the transition process. 5 These second-mode disturbances are typically

high-frequency fluctuations in pressure.

For the special case where the phase velocity, c, is real and the wave number, ct, is

complex, the latter earl be written as

o_ = o_r+ i oq. (1.2)

Substituting Eq. 1.2 into Eq. 1.1 above, the imaginary component of o_produces a real

coefficient of amplitude A = e-Oa(x-ct). This real coefficient provides the mechanism for

linear normal-mode amplification. When the term (-o_'b is either negative, zero, or positive

the disturbance is either stable, neutrally stable, or unstable, respectively. A local stability

analysis can be applied at a series of streamwise stations along the body to evaluate -o_i(x).

For parallel flows, the integrated-growth factor, N(x), can be evaluated by 6

NCx) - NCxo) = -ai(_) d_ = In ACx) (1.3)
A(xo)'

o

where x0 is a reference location, typically chosen as the upstream point of neutral stability

where -oq = 0 such that N(x0) = 0, and _ is the variable of integration along the streamwise

direction. The above expression also shows the relationship between the growth factor and

the disturbance amplitude. The local rate of change in amplitude is given by

OA
= A x -o_ (1.4)

thus, -oq is commonly referred to as the spatial-amplification rate.

A method for LST-based computation of amplification rates and integrated-growth

factors for the normal-disturbance modes is described by Malik. 7 The application of this

method, termed the eN method, to transition prediction requires correlation of integrated-



growth factorswith transitionmeasurements. To successfullyapply thecN method,

however, a reliabledatabaseoftransitiondatawhere body geometriesand flow conditions

arc similar is needed. 4 This necessity provided the motivation for previous transition

experiments on cones at angle of attack in hypersonic flows.

1.1.2 Transition Experiments

Several experiments have documented angle-of-attack effects on transition for sharp

cones in hypersonic-flow conditions. 8-14 These experiments consistently observed

transition shift downstream on the windward meridian and upstream on the leeward

meridian, relative to the zero-degree, angle-of-attack case. A few of these studies have also

documented the circumferential transition pattcrus over regions where the cross flow

velocity is significant.8-10,12 Only the location of transition was documented in these

experiments. Stability experiments, on the other hand, investigate details of the instability

mechanisms which lead to transition.

1.1.3 Stability Experiments

A comprehensive review of earlier hypersonic boundary-layer stability experiments

was given by Stetson and KimmeL 15 This report described the application of hot-wire

anemometry diagnostics to measure amplification and growth of the normal-mode

disturbances. Previous stability measurements16 and LST-based computations17 have

confirmed the dominance of the second-mode disturbance for a sharp cone at a zero-degree

angle of attack. A significant discrepancy between the measurements and computations

was noted in the peak-amplification rates, however. 15 These variations may be attributed

to the influence of the freestream disturbance field in the test facility, which is not

considered in LST-based computations. Furthermore, the greatest discrepancies between

the stability measurements and LST predictions corresponded to those regions where non-

linear disturbance interactions were strongest. 18 The measured growth of high-frequency

4



disturbances within the range of stable frequencies predicted by LST was attributed to

harmonic generation of the dominant, second-mode instability. Additional non-linear

interactions between freestream disturbances and dominant-instability mechanisms may

occur, however, where the freestream-disturbance levels are high.

Stability measurements on a sharp cone at angle of attack in a hypersonic flow were

first presented by Stetson et al.19 Significant findings of this study are summarized in the

following. The amplification rates of second-mode disturbances were not greatly affected

by angle of attack. The region of amplification shifted, however, downstream for the

windward ray and upstream for the leeward ray. The second-mode frequency increased on

the windward ray, scaling with the thinner boundary-layer thickness. On the leeward ray,

the second-mode frequency decreased, obscuring the first-mode disturbances. Growth of

the first mode was reduced on the windward ray. These angle-of-attack experiments were

conducted in the same wind-tunnel facility as the sharp-cone experiments at a zero-degree

angle of attack. 16 Freestream disturbances in such a test facility may artificially stimulate

growth of the normal-mode disturbances and prematurely induce transition as discussed

below.

1.1.4 Wind-Tunnel Disturbances

The primary disturbances in a supersonic or hypersonic wind-tunnel facility

illustrated in Fig. 1.1 are of three types: entropy, sound, and vorticity modes. The

entropy-mode disturbances arise from temperature spottiness and are negligible if the flow

is thoroughly mixed prior to entering the test section. The sound mode propagated from

the valves upstream of the settling chamber are eliminated through the use of free meshes in

the settling chamber. These mesh screens also reduce the amplitude of the vorticity-mode

disturbances. Remaining vorticity disturbances are largely attenuated by the expansion

downstream of the nozzle throat. Most importantly, however, eddy structures in the

5



turbulentboundarylayeronthenozzle wall radiate acoustic noise. 20 These disturbances

propagate along Mach lines from the nozzle wall towards the centerline axis. These

acoustic disturbances, or pressure fluctuations, can stimulate disturbance growth in the

boundary layer of the test model which may prematurely induce transition to turbulence, as

illustrated in the figure.

The freestream disturbance field must be considered when comparing transition

measurements from different test facilities and extrapolating these measurements to

atmospheric-flight conditions. 21 The above collection of transition experiments TM were

conducted under a wide range of flow conditions in a variety of test facilities which include

a ballistics range, 14 a shock tunnel, 13 and wind tunnels of different geometries. 8-12

Variations in the transition measurements are thus expected due to the unique disturbance

environment of each test facility. In addition, hot-wire measurements obtained in stability

experiments include contributions from both the normal-mode disturbances in the model

boundary layer and the facility disturbances. Small-amplitude normal modes may be

obscured in a high-level disturbance environment. Therefore, to increase the signal-to-

noise ratio of the normal modes for stability measurements, the facility disturbances should

be minimized. The above deleterious effects of facility noise on stability and transition

measurements prompted the development of low-disturbance wind tunnels, described in the

following.

1.1.5 Low-Disturbance Wind Tunnels

To provide a suitable environment for stability and transition experiments, NASA

Langley has developed a series of low-disturbance wind tunnels. 22 Significant features of

such test facilities are illustrated in Fig. 1.2 and discussed below. First, the air supply is

highly filtered to remove particles from the flow. A series of progressively freer mesh

screens significantly reduce the vorticity and entropy disturbances in the settling chamber

6



producinga very uniform flow. The dominant acoustic disturbances are reduced by

delaying boundary-layer transition on the nozzle wall. This is achieved by applying the

following techniques. Wall suction is applied through an annular bleed slot upstream of the

nozzle throat to remove the turbulent boundary layer on the settling chamber wall. A new

laminar boundary layer is established on the nozzle wall at the bleed-slot lip. The nozzle

surface itself is highly poohed to delay surface-roughness induced transition. In addition,

a straight contour is used just downstream of the nozzle throat to delay the development of

G_irtler vortices. Because transition on the nozzle wall is delayed, the level of acoustic

noise radiated onto the test model is reduced as illustrated in the figure. The present

stability experiments were conducted in such a low-disturbance facility. The specific

objectives of the present study are outlined below.

1.2 Objectives

The primary objective of the present work was to conduct the first hypersonic

boundary-layer stability experiments on a conical model at angle of attack in a low-

disturbance wind tunnel The stability measurements obtained in the low-disturbance

environment are suited for validation of stability theory prediction methods. The present

stability measurements are also unique because new hot-wire anemometry diagnostics were

applied. An additional objective was to generate laminar-flow computations for benchmark

comparisons with mean-flow measurements. These mean-flow measurements were

obtained in support of the stability measurements. The following chapter details the

approach taken in the present experimental and computational work. Following this, the

results are presented and discussed. Finally, this work is concluded with an overview of

the significant findings and recommendations for future study.
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2 Approach

The experimental apparatus and procedure implemented in the present study are

described in this chapter. This experimental work was complemented by a computational

study ofthelaminarmean-flow boundary layeron theflared-conemodel atangleof attack.

The computationalmethod employed isalsodescribedinthischapter.Finally,post-

processingtechniquesappliedtotheexperimentaland computationaldataaredescribed.

2.1 Experimental Apparatus

The low-disturbancefacilityand flared-conemodel arefirstdescribedinthis

section.Then, &tailsof theinstrtunentationand flow-diagnosticmethods employed are

presented.Lastly,the model mounts designedand builtforthepresentexperimentsare

described.

2.1.1 Low-Disturbance Facility

The Mach-6 Axisymmetric Quiet Nozzle, which is housed in the Nozzle-Test-

Chamber Facility (NTC) at NASA Langley Research Center, provided the low-disturbance,

test environment required for the present stability measurements. A schematic diagram of

the facility is shown in Fig. 2.1. The locations of the facility free-screen fiflter, settling

chamber, nozzle, and test section are indicated in this figure. More specific details of the

design and performance of the "quief' nozzle can be found in Ref. 23. The geometric ratio

of the nozzle-exit area to the throat area was 56.1. This area ratio yielded a measured Mach

number of Moo = 5.91 in the uniform-flow test region. The stagnation conditions for the

present tests were P0** = 130 psia and TO**= 810 °R. The Reynolds number per unit length

for these test conditions was Re/l = 2.82 × 106 ft -1.



The disturbance environment of the NTC has been documented in a previous

study .24 Results of these measurements are relevant to the analysis of the present

experiments and are summarized in the following. Within the uniform Mach-nnmber

envelope a large region existed in which flow disturbances were undetectable, as indicated

by the quiet-flow region shown in Fig. 2.2. Beyond this region, a low-noise test volume

existed in which disturbances were confined to the 0-50 kHz low-frequency band,

primarily centered around 16 kHz. The source of these disun'bances was acoustic radiation

from the pre-transitional boundary layer on the nozzle walL

2.1.2 Flared-Cone Model

The NASA-LaRC test model designated the 93-10 flared-cone model was used for

this study. A schematic diagram of the model geometry is shown in Fig. 2.3. The model

was constructed with a highly-polished thin skin to minimize effects on the model

boundary-layer stability due to both surface roughness and heat conduction. The model

measures 20" in length and has a 4.6" base diameter. The 10.inch length of the model

measured from the sharp tip is a straight-walled cone with a 5-degree half angle. The

remaining 10.inch length of the model is flared outward with a 93.071-inch radius circular

arc. The flared arc is tangent to the straight wall at the cone-flare juncture. The purpose of

the flare is to generate an adverse-pressure gradient which may induce transition on the

model within the operating capabilities of the NTC Facility.

2.1.3 Model-Surface Instrumentation

To monitor surface temperature the flared-cone model was instrumented with K-

type thermocouples. The model-surface thickness directly over the surface-mounted

thermocouples was 0.03" and 0.06" elsewhere. A total of 51 thermocouples were axially

spaced along a single meridian at 1-inch intervals between 2 and 9 inches and at 0.25-inch

intervals from 9 to 19.75 inches, measured from the tip. Along the opposing meridian, 29
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equally-spaced static-pressure taps are located. An electronic data-acquisition unit

controlled over a standard computer interface was used to monitor and record the

temperatures. Surface pressures were monitored at select locations on the model with the

measurement system described in the following.

2.1.4 Pressure-Measurement System

To measure the static pressure on the model surface a set of ten MKS 690 Absolute-

Pressure Transducers was used. The full-scale range of the transducers was 279 lb/ft2.

Stainless-steel tubing which ran through the model sting and outside the test section

conn_ed the pressure-tap orifices through a manifold system to the transducers. The

manifold was evacuated by a low-pressure vacuum pump to check the tubing for leaks and

to provide a vacuum-reference pressure for offset-voltage calibration. This manifold

system allowed each transducer to be valve-isolated either to the vacuum-reference pressure

or to its corresponding orifice on the model surface.

The transducer output voltage was monitored by MKS 670A High-Accuracy Signal

Conditioners. These signal conditioners allowed the mean-flow surface pressure to be

monitored with a high degree of precision. The time constant for all measurements was set

to 400 msee which effectively attenuated frequencies above 0.4 Hz by at least 3 dB. The

filtered analog signal was then digitally sampled at a rate of Fs = 10 Hz. The mean-flow

pressure level was determined by taking the average of the 100 most-recent samples. This

provided a 10-second moving average of the surface pressure which mitigated effects of

random electronic noise in the transducer output and instantaneous pressure fluctuations in

the physical flow.

The surface-pressure measurements were accurate to within + 0.083 lb/ft 2. The

freestream static pressure was P** = 13.01 lb/ft 2, and the freestream dynamic pressure was

q.o = 318.1 lb/ft 2. From inviscid theory, 25 the surface pressure over a straight-walled cone
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with a 5-_gr_ half angle at a zero-degree angle of attack under these free,stream conditions

is approximately Pco, e = 19.74 lb/ft 2. Using these values as a reference, the relative

precision for the non-dimensional pressure coefficient under typical conditions was

Cp = (Pcone-Poo)/qoo = 0.0211 + 0.00026.

2.1.5 Schlieren Flow Visualization

The NTC facility was equipped with a conventional schlieren system for flow

visualization. The schlieren method visualizes the density variations in a high-speed

compressible flow. A high-intensity strobe light source was synchronized with a video

camera which enabled images of the flow to be monitored in real time and recorded on a

video cassette. The standard frame-capture rate of the video system was 30 Hz. However,

for each frame the light source was pulsed for only a 1-1asec duration to obtain sharper

images of the high-speed flow. The schlieren knife edge was oriented parallel to the nozzle

axis to visualize density gradients in the vertical direction. This orientation was chosen to

highlight the gradients through the model boundary layer in the schlieren image. Because

most of the model was inside the nozzle, however, the schlieren system was used to

qualitatively assess the state of the boundary layer over only the aft region.

2.1.6 Hot-Wire Anemometer System

The hot-wire anemometer system for obtaining mean-flow and stability

measurements in the boundary layer consisted of a hot-wire probe, a lxaverse mechanism,

and an anemometer cL-cuiL Each of these integral components is described below.

A schematic diagram of the single-component hot-wire probe used in the present

study is shown in Fig. 2.4. The tip of the probe consisted of a set of two stainless-steel

broaches to which the 0.0001-inch diameter platinum-plated tungsten wire was manually

spot welded. A third broach, as shown in the figure, served as a contact switch which

completed an electrical circuit when in physical contact with the model. The probe-tip
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dimensions,dp,dq,anddl in thefigure, were manually measured with a precision of

+ 0.001 inch. Dimensions of the probe tips used for the present study are listed in Table

2.1. The typical length-to-diameter ratio of the thin-filament hot-wire sensors was 200.

The traverse system positioned the hot-wire probe within the boundary layer on the

model with a high degree of precision. The interchangeable probe tips were mounted on a

support arm which was in turn mounted to a set of motor-driven traversing slides. The

traversing slides were perpendicularly mounted on the ee'fling of the test-section box. A

photograph of the traverse units and the support arm mounted in the NTC test section with

the 93-10 flared-cone model is shown in Fig. 2.5. This mechanism allowed movement of

the hot-wire probe tip in a horizontal plane in the test section with a precision of about

+ 0.0004". The traverse system was controlled via a standard computer interface.

The anemometer circuit used to obtain measurements from the hot-wire sensor was

a new constant-voltage anemometer (CVA). 26 The CVA system was a prototype system

and remains under continued evaluation and development. 27 The selection of the constant-

voltage system was primarily dictated by its ability to measure disturbances in the

freestream of the NTC Facility. Other anemometry techniques such as constant-current and

constant-temperature systems were not capable of detecting the small-amplitude

disturbances in the freestream of the quiet facility. 28 The high-sensitivity prototype CVA

system was reported to have a 350-kHz bandwidth.

The CVA output was not calibrated for the present measurements. Interpretation of

the unealibrated mean-flow and stability measurements was based on the following

considerations. Mass flux in the direction normal to the wire and stagnation temperature at

the sensor both contribute to the anemometer-output signal. The sensitivity of the CVA to

the mass-flux contribution becomes considerably larger than that to the stagnation

temperature contribution, however, as electrical heating of the hot-wire sensor increases. 28
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Eleclricalheatingofthewireiscontrolledby adjustingthesensorvoltageor curr_nt.The

present measurements were obtained with the hot-wire sensor operated under high-voltage

conditions. In addition, the stagnation-temperature fluctuations are assumed to be

negligible. Thus, the dependence of the anemometer output is primarily attributed to the

mass-flux contribution. Furthermore, stability theory prescribes a common exponential-

wave amplification factor for all physical flow-disturbance quantities. Thus, uncalibrated

measurements of the non-dimensional amplification rates and integrated-growth factors

may be compared with stability theory independent of the physical flow-disturbance

quantity.

Since a single-component hot-wire sensor was used, only the component of flow

disturbances propagating in the direction normal to the hot-wire itself can be measured.

Hot-wire measurements were thus restricted to regions where the mean-flow direction was

known a priori. Therefore, all hot-wire measurements were conducted along the windward

and leeward meridians, i.e., in the symmetry plane of the axisymmetdc model at angle of

attack.

2.1.7 Angle-of-Attack Mount

: Since the test facility was not equipped with a mechanism for adjusting the angle of

attack of the model, a new model mount was fabricated for the present study. The design

of the new model mount was subject to several constraints which are as follows. The

traversing mechanism allowed movement of the hot-wire probe only in a horizontal plane,

parallel to the ceiling of the test section. Thus, the symmetry plane, in which hot-wire

measurements were to be obtained, was restricted to a horizontal plane. In addition, the

hot-wire probe-arm mount and the software algorithm which controlled the traverse

movement were configured to conduct measurements only on the left side of the model

when looking upstream into the nozzle. So, to obtain measurements on both windward
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and leewardrays,theaxls"ymmetric model was physicallyrequitedtobe placedatboth

positiveand negativeside-slipanglesinthetestsectiontoinvestigatethe effectsof angleof

auack.

Schlierenphotography ofthewindward and leeward meridianscould not be

obtainedconcurrentwithhot-wiremeasurements when thesymmetry planewas horizontal.

In thisconfiguration,thelightpathoftheNTC schliercnsystemthroughthehorizontal

symmetry plane was obstructedby themodel. Therefore,inordertoobtainschlieren

visualizationthe model was alsorequiredtobe placedwiththewindward and leeward rays

in a vertical plane. As an additional constraint, the model was required to remain within the

uniform Mach-number envelope of the nozzle and upstream of the nozzle-exit shock.

The maximum angle of attack attainable, subject to the above constraints, was

determined to be 5 degrees. The pivot point was located on the nozzle axis 4-1/16"

upstream of the nozzle exit. Thus, the following angle-of-attack test cases were

established: o_= 0 °, 2 °, and 4 °. The new model mount prodded for the positive and

negative physical sideslip angle configurations, _ = + 2 ° and + 4 °, for hot-wire

measurements. Additionally, mounts were needed for the physical angle-of-attack

configurations, oc = 2 ° and 4 °, for schlieren visualization. Here, a positive angle denotes

the windward case, and the negative angle refers to the leeward case for hot-wire

measurements. An existing mount was used for the zero-degree baseline case.

The above requirements were satisfied by the design of a set of mounting blocks.

A common base block was mounted to the floor of the test section, and interchangeable

blocks were bolted to the base block for sideslip and angle-of-attack configurations. An

existing strut mounted the model to the new blocks. For hot-wire measurements, one top

block allowed the model to be mounted at sideslip angles of _ = +2 ° and -4 ° as well as _ =-

2 ° and +4 ° when inverted. Two other top blocks were machined with mounting surfaces at
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angles of attack of a = 2 ° and 4 ° to be used for schlieren visualization. A photograph of the

short strut and the four new model mounting blocks is shown in Fig. 2.6. The blocks

were precision machined from high-strength Aluminum alloy, and steel-threaded inserts

were used in all bolt holes. Three-view engineering drawings of the blocks are included in

section 8.1 of the Appendices. The typical precision of the model angle with the new

mounting blocks was about + 0.2 °, equivalent to the precision of the existing zero-degree

mount. A photograph of the fla_d-cone model mounted on the new blocks in the NTC

Facility is shown in Fig. 2.7.

2.2 Experimental Procedure

The model was tested at angles of attack of 0¢= 0 °, :k2 °, and +4 °. Baseline

measurements were obtained along a single meridian for the ot = 0 ° case. Angle-of-attack

measurements were obtained along the windward and leeward meridians for the ot = 2 ° and

4 ° cases. Surface and boundary-layer measurements characterizexl the mean-flow state.

Also, boundary-layer stability measurements documented the development of flow

disturbances. Table 2.2 lists the specific measurements obtained with the above

diagnostics for each test ease. Procedures followed to conduct the experiments are outlined

below.

2.2.1 Mean-Flow Surface Measurements

Mean-flow surface-temperature measurements verified the thermal-equilibrium state

of the model. Also, mean-flow surface-pressure measurements documented the adverse-

pressure gradient on the flared-cone model.

To determine the thermal-equilibrium state, the surface temperature was monitored

during a wind-tunnel run at test conditions until the temperatures remained constant with

time. Prior to starting hypersonic flow in the tunnel, a low-speed preheat cycle with air-
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supply conditions of P0 = 50 psia and TO = 810 °R, which was routinely applied to alleviate

condensation, was then used to bring the model to the documented equilibrium

temperature. Preheating the facility insured that the model surface would quickly reach a

thermal-equilibrium state, thus maximizing data-acquisition lime during hypersonic-flow

operation. All measurements presented herein were performed with the model in a thermal-

equilibrium state.

Prior to conducting pressure measurements, each signal conditioner was re-

calibrated to compensate for voltage drift and variations in ambient conditions. The

transducers were initially valve-isolated to the evacuated manifold during the preheat cycle

and the start of hypersonic flow. After stable hypersonic flow was established, the isolator

valves were then mined to establish the hydraulic cormection from each transducer to the

corresponding pressure orifice. Time-averaged surface-pressure measurements were

monitored until these reached steady-state values.

2.2.2 Mean-Flow Boundary-Layer Measurements

Off-surface measurements were obtained with the hot-wire anemometer system.

Time-averaged mean and rms signals were recorded from the CVA system. The mean

output qualitatively represented the mean-flow mass-flux profde. The rms output is a

measure of the flow-disturbance energy. Thus, the peak-rms location identified the locus

of maximum disturbance energy. To optimize the SNR of the disturbances, subsequent

stability measurements were obtained at these maximum-energy locations.

Precision movement of the hot-wire probe and data acquisition from the CVA

system were controlled over a standard computer interface. For the baseline and leeward

cases the probe was traversed over 17 streamwise locations in 0.5" increments along the

nozzle axis. Fewer stations were surveyed for the windward cases because of the confined

space between the model and the nozzle wall. Also, the location of the hot-wire
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measurementswas rcsu'icted to the flared region of the model for all test cases. At each

strcamwise location the CVA output was recorded at 13 discrete locations within the

boundary layer. The distribution of these discrete points was smoothly clustered near the

pcak-rms location. The peak-rms location was first determined by a short survey over the

most-downstream stations. A time delay was applied after any incremental probe

movement and before any hot-wire measurements were recorded. This delay insured that

Wansient effects of electromagnetic interference from the traverse drive motors did not

corrupt the measurements.

2.2.3 Boundary-Layer Stability Measurements

The hot-wire anemometer system was also used to measure stability characteristics

of the boundary layer. These stability measurements were based on time histories of the

instantaneous flow-disturbance fluctuations at the maximum-energy locations. The time-

series data were recorded as follows. The CVA output was f'LrSt analog f'fltered with a

pass-band from 1 kHz to 810 kHz to minimize the effects of low-frequency electronic noise

and high-frequency aliasing. Then, 40,000 data values were digitally sampled at a rate of

Fs = 2 MHz with 8-bit numerical precision with an oscilloscope.

2.3 Navier-Stokes Computations

The laminar flow over the flared-cone model at angle of attack was modeled by the

numerical solution of the Navier-Stokes equations. These computations were performed

on the North Carolina Supercomputing Center's Cray Y-MP and Cray T90. The following

sections present details of the flow solver, the grid and boundary conditions, and the test

cases computed.

17



2.3.1 Flow Solver

The NASA-developed code CFL3D was used in the present study. 29-31 CFL3D

has been used to obtain mean-flow solutions on which LST computations were based for

the flared-cone model at a zero-degree angle of attack in an earlier study. 32 Also, the

suitability of CFL3D for modeling general high-speed flows has been previously

assessed. 33 Salient features of the code are now discussed.

Steady-state solutions were obtained with local time stepping. A flux-difference

splitting scheme was applied for spatial differencing of the Euler fluxes with upwind-biased

third-order differencing and smooth flux limiting. Laminar viscous fluxes were included in

the three coordinate directions simultaneously. The scalar matrix-inversion method was

applied. Convergence-acceleration techniques such as multi-gridding and mesh sequencing

were also utilized.

2.3.2 Grid & Boundary Conditions

An algebraic mesh generator was used to compute coordinates for the half-body

plane-symmetric grid. A hidden-line plot of the grid is shown in Fig. 2.8. The farfield

boundary is shown reflected about the X-Z plane for clarity. Grid points were smoothly

clustered near the tip of the model and near the surface. Circumferential angular spacing of

planes common to the centerline was held constant. Freestream conditions were prescribed

on the inflow and farfield boundaries. Plane-symmetry boundary conditions were applied

to the leeward and windward planes. Over the model surface, adiabatic and no-slip

boundary conditions were imposed. At the outflow plane a one-point extrapolation was

specified.

Previous computations have demonstrated the application of CFL3D to model the

mean-flow over a 5-degree half-angle cone at a 2-degree angle of attack under similar

freestream conditions. 34 Results of the grid-refinement study conducted for this previous

18



investigationwere used as a guide inchoosing griddimensionsforthepresentstudy.The

presentgriddimensions were 109 x 41 x 105 inthestreamwise,circumferential,and

surface-normaldirections,respectively.These dimensionsallowedfortwo coarsermeshes

tobe used inthemesh-sequencing processand in multi-gridaccelerationatthefinestmesh

level.

2.3.3 Test Cases & Freestream Conditions

The flow was computed forct= 0°,2°,and 4°forcomparison with corresponding

experiments. Additionally, to assess the impact of the limited precision of the model

alignment, the case where o_= 0.2 ° was also computed. The prescribed freestream

conditions were M** = 5.91, T** = 101.9 ° R, and Re/l = 2.82 x 106 fr 1 which

corresponded to the wind-tunnel test conditions. The solutions were advanced until the

adiabatic surface-temperature distributions converged to a specified tolerance.

2.4 Experimental & Computational Data Processing

This section describes the post processing applied to the experimental and

computational data. Transformation of the hot-wire coordinates and evaluation of the

boundary-layer thickness and the second-mode disturbance frequency are discussed in the

following sections. Estimation of flow-disturbance power spectra and bispectra is then

discussed. Finally, this chapter is concluded with descriptions of the computation of flow-

disturbanceamplificationratesand integrated-growthfactors.

2.4.1 Hot-Wire Coordinate Transformation

The contactswitchwas used asa coordinatereferenceforthehot-wire

measurements. However, thehot-wiremeasurement locationwas not coincidentwith the

contact-switchlocation.Also,thesecoordinateswere measured withrespecttothenozzle

coordinatesystem. Thus, a transformationwas necessarytoreferencethemeasurements to
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model arc-length and surface-normal coordinates. The algorithm of this coordinate

transformation is described in section 8.2 of the Appendices.

The contact-switch coordinates were reliable within the precision of the wavcrs_

mechanism, about 4- 0.0004 inch. However, the coordinate transformation required the

use oflimited-precision,manually-measured dimensions,and thesearc asfollows.The

axial position of the model relative m the nozzle-exit plane, (Xbase-Xexit), was measured

with a precisionof+ 0.0156 inch,and thesideslipangle,_,was accuratem within4-0.2°.

The angleof thehot-wire,probe arm, 0,was adjustedwith an accuracy of 4-0.5°. And,

dimensions of thehot-wireprobe tips,dp and dq,were measured towithin+ 0.001 inch.

The accuracyof thetransformationwas estimatedby adjustingthe valuesofthe

manually-measured dimensions over the range of their respective tolerances and examining

the net effect on the final coordinates. The reliability of the transformed surface-normal

coordinates was estimated to be about 4. 0.002 inch and the accuracy of the surface, arc-

length distances was estimated at 4- 0.02 inch. As a reference scale, the boundary-layer

thickness near the base of the 20-inch long model at a zero-degree angle of attack is about

0.06 inch.

2.4.2 Boundary-Layer Thickness Estimation

The boundary-layer thickness, 8, was independently estimated from both mean-

flow measurements and Navier-Stokes computations. The measured estimate was

determined by the surface-normal distance where the CVA, mean-output profde approached

a near-zero slope, to within a specified tolerance. The mean output was primarily attributed

to mass flux. Because the discrete measurement locations were clustered near the peak-rms

location, the data near the boundary-layer edge were sparsely spaced. Application of a

smoothing cubic-spline fit determined 8 with higher resolution than the spacing of the

original data. However, the smoothing fit tended to bias the edge location outward by a
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smallamount.Thus,thereliabilityof themeasured8estimatewaslimitedby the accuracy

of both the coordinate transformation and the curve fit, the combined effects of which

resulted in a net accuracy of about + 0.005 inch.

The computational estimate was evaluated from the computed boundary-layer

velocity profile. Evaluating 5 based on the slope of the velocity profile was a practical

method because the result was not highly sensitive to the edge-gradient tolerance. While a

velocity gradient existed between the boundary-layer edge and the model shock, this

gradient is small when compared to that within the shear layer itself. The variation in 5 due

to adjusting the edge-gradient tolerance fell well within the precision of the experimental

measurements. An interpolating cubic-spline fit was applied to the numerical data to further

increase the resolution of the 8 estimate beyond that of the computational mesh.

2.4.3 Second-Mode Disturbance-Frequency Estimation

For a general wave-like disturbance, the frequency, F, and the wavelength, _, are

related to the speed of propagation, IVI, by

IVl = 2_F. (2.1)

The second-mode disturbance wavelength has been shown to scale with the

boundary-layer thickness according to 16,17, 32

2_2nd Mode = 2_i. (2.2)

The speed of propagation of the second-mode disturbance was estimated by the

speed at the location of maximum flow-disturbance energy within the boundary layer. The

boundary-layer disturbances are assumed to be at a maximum amplitude and energy at the

most-unstable location in the boundary layer. This location is referred to as the

generalized-inflection point. 5, 35 The generalized-inflection point, ygip, is the location

where
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Combining Eqs. 2.1 and 2.2 above, the frequency of a second-mode disturbance,

F2ndMode, can be estimated based on the velocity magnitude at ygip, IVgipl, and the

boundary-layer thickness, 8, by,

F2nd Mode _ffiIVgipl (2.4)
28

Flow solutions obtained from CFL3D along the windward and leeward meridians

were used to evaluate IVgipland 28. The above estimate is not presented as a substitute for

more-detailed stability computations. Without LST-based computations available for

comparison with the present angle-of-attack test cases, however, this estimate provided a

general indication of the range of frequencies that may be measured in the experiments.

Moreover, this result provided a basis for the assessment of angle-of-attack effects on the

second-mode disturbance frequency.

2.4.4 Power-Spectrum Estimation

To identify flow-disturbance modes, averaged-power spectra of the time-series,

stability measurements were computed as follows. The 40,000 sample record at each

measurement location was divided into segments of 256 samples. This segment length

corresponds to a duration ofx = 0.128 msec for the 2-MHz sampling rate. From each

segment the mean value of the segment was subtracted. A Harming window was then

applied to the segment. The fast-Fourier transform of the windowed segment was

computed with 1024 data points. The resulting complex-valued spectrum was multiplied

by its conjugate to yield the real-valued power spectrum. Power spectra from 156 non-

overlapping segments of the original record were averaged to compute the averaged power

spectrum. This procedure was applied to an additional record of 40,000 points recorded at

the same location, and these spectra were then averaged for each measurement location.
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The frequency-sampling interval was AF = 1.95 kHz for the computed spectra.

The fiequency resolution of the Harming window was 4/z = 31.25 kHz, or twice that of a

rectangular window of the same length. 35 However, the Hanning window provided more

than twice the amount of side-lobe attenuation. Thus, the effective dynamic range was

increased with the use of a Hanning window over the rectangular window. Such a feature

was useful in detecting small-amplitude disturbances which may have been otherwise

obscured by frequency leakage from stronger signal components.

2.4.5 Bispectrum Estimation

The bispectrum was used to detect non-linear phase-coupling disturbance

interactions. Phase coupling occurs when the sum of the phases of frequency components

F1 and F2 is equivalent to the phase of the sum frequency, (F1 + F2). This phase

relationship is described by

Z X(F1) + Z X(F2) = Z X(FI+F2), (2.5)

where X(F) is the Fourier transform of the time-series signal x(n). Unlike the first-order

power spectrum, the higher-order bispectrum retains phase information about frequency

components as shown below. The bispectrum of x(n) is defined as

B(F1,F2) = E[X(F1) X(F2) X*(FI+F2)], (2.6)

where E[ ] indicates the expected-value statistical operation. Bispectra were computed

using an fit-based algorithm similar to the power-specmma estimation method. The time-

series data record was divided into segments, and for each segment X(F) was evaluated.

The triple product, [XfF1) X(F2) X*(FI+F2)], was computed for each segment and then

averaged. The averaged estimate for B(F1,F2) was obtained from 19 segments of 256

points each. The frequency-sampling interval was AF = 1.95 kHz and the frequency

resolution was 16.125 kHz. However, the bispectrum estimate was smoothed in the

frequency domain with a square convolution mask approximately 8 klqz wide, so the net
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resolutionwas about 25 kHz. This resolutionwas sufficienttoidentifyfrequencybands of

phase coupling.

2.4.6 Amplification Rates

The boundary-layerstabilitywas alsocharacterizedby the localflow-disturbance

amplificationrate.In itsnon-dimensionalform theamplificationrate,-¢xi, is given by

_L_ aA (2.7)

-oq = 2A

where A is the amplitude of the flow disturbance and R is the stability Reynolds number

defined by R = (Res) 0.5. The above non-dimensional form is independent of any locally-

constant multiplicative calibration factor, however, additive noise may obscure detection of

flow-disturbanceamplification.

The amplitudespectrawere firstevaluatedby takingthesquarerootoftheaverage-

power spectra.A smoothing cubic-splinefitwas thenappliedtorefinethedataalongthe

streamwisedirectionfrom 17 to64 locationsforeach discretefrequency.A second-order

accuratecentralfinitedifferencewas used toapproximatethespatialderivative,aA/_IL

from thefittedamplitudedata.The centralvaluesoftheamplitudewere used forthe

normalizationcoefficient,(1/2A).Using jtoindicatethearrayindexalong thestreamwisc

directiontheabove finite-differenceapproximationcan be writtenas

=-!-(Aj+I-Aj.I)
2Aj (Rj+I Rj-I) (2.8)

2.4.7 Integrated-Growth Factors

The flow-disturbance integrated-growth factor, commonly referred to as the N

factor, locally measures the net growth of a flow disturbance from the initial point of

amplification. Detection of the initial growth of infinitesimal disturbances is limited by the

finite level of noise in the CVA system. Thus, the absolute growth factor is not physically

measurable. Using the most-upstream location as a reference, however, the relative growth
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factorat downstream locations can be measured. The N-factor difference was evaluated

from the measured amplitude spectra according to the relationship shown previously in Eq.

1.3 and repeated here with the following change in notation N is the local integrated-

growth factor, and NO is the unknown integrated-growth factor at the arbitrary reference

location, x0. Their difference is given by

N - No-- ln_, (2.9)

where A is the local amplitude, and A0 is the amplitude at the reference location, typically

chosen as the most-upstream measurement location. To experimentally detect growth the

disturbance must have an amplitude greater than the additive noise in the anemometer

system. Thus, regions where growth is not experimentally measured should not

necessarily be interpreted as regions of neutral stability. Downstream of measured

disturbance growth, the slope of the N-factor difference can he compared on a consistent

basis with LST predictions.

In regions where the flow signal is experimentally detectable above the noise floor,

the measured N-factor difference is not degraded by the spatially-invariant additive noise.

Electronic noise is assumed to be independent of streamwise location, so (N-N0)noise

would be negligible. However, the flow-disturbance environment of the test facility is not

spatially invariant. Consequently, the impact of facility noise on the presem stability

measurements was assessed by monitoring disturbances in the 0-50 kHz low-frequency

band.
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3 Results & Discussion

For allangle-of-attacktestcasesthefrecstrearnunit-Reynoldsnumber was Re/l=

2.82x 106 frl. Under theseconditionsthespatialdistributionofthestabilityReynolds

number, R, isplottedversusthe arc-lengthReynolds number, Rcs,withthe flared-cone

model geometry inFig.3.1.The cone-flaretangentpointatX = 10" correspondstoRes =

2.35 x 106, or R = 1533. Surface measurements were obtained over the length of the

model Hot-wire measurements, however, were conducted over the flared region typically

in the range X =11"-19" which corresponds to (Res/106) = 2.6-4.5 or R =1600-2100. All

experimentaland computationaldatapresentedhereinareplottedagainst(RcsII06)to

indicate strcamwise location.

The discussionofresultsbelow isorganizedasfollows.First,Navier-Stokes

computationsofthe flowfieldovertheflared-conemodel atangleofattackarepresented.

Next, surfacemeasurements and computationswhich document the mean-fiow stateof the

boundary layerarepresented.Schlierenflow-visualizationimages arethenpresented

which verifytheboundary-layerstate.Following this,boundary-layermeasurements

which characterizethemean flow and thestabilityarediscussed.Finally,theeffectsof

angleofattackon theboundary-layerstabilityand transitionfortheflared-conemodel are

summarized.

3.1 Flow-Field Computations

Navier-Stokes computations are presented here to demonstrate the unique features

of the flow over the flared-cone model. Also, the general effects of angle of attack on the

mean flow are discussed. A flooded-contour plot of the computed pressure field is shown

26



for the zero-degree case in Fig. 3.2. The color map along the top of the figure indicates the

numerical values of the non-dimensional pressure coefficient. Contour lines of constant

pressure are shown on the surface. Axial planes are shown at a station 5" from the tip and

at the outflow plane. The solutions in the windward and leeward planes are identical for

this ares"ymmetric case. The upstream portion of the model is equivalent to a straight-

walled cone and exhibits similar features. The pressure rises across the shock originating

from the tip. Pressure contours follow rays emanating from the tip, including the cone

surface, consistent with inviscid-cone theory.37 Downstream of the tangent, however, the

pressure rises at a discontinuous rate due to the adverse-pressure gradient induced by the

flare's outward curvature. Compression waves propagate away from the flare surface. A

slight degree of asymmetry is observed for the cz = 0.2 ° case as shown in Fig. 3.3. The

skewed surface-pressure contours indicate that the pressure increases on the windward ray

and decreases on the leeward ray relative to the axas"ymmetric zero-degree case.

Computations for the (x = 2 ° case are shown in Fig. 3.4. The pressure has

increased substantially on the windward ray and decreased on the leeward ray compared to

the zero-degree case. Pressure contours in the leeward plane are perpendicular to the

surface because the pressure gradient in the surface-normal direction is very small within

the viscous boundary layer, The vertical extent of these normal pressure contours indicate

the approximate thickness of the boundary layer over the flare. This effect was not clearly

shown in the baseline computations because the boundary layer was much thinner. The

boundary layer on the leeward ray grows even thicker in the (z = 4 ° case as shown in Fig.

3.5. Conversely, the increased pressure levels on the windward ray result in a much

thinner boundary layer although this feature is not clearly shown in these plots. The

discrete mesh fully contains the conical shock for all of the angle-of-attack cases

investigated. The pressure field on the flared-cone at angle of attack causes the flow to
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migratefrom regions of high pressure towards regions of low pressure. The resulting flow

asymmetry may significantly influence the development of instabilities in the boundary

layer.

3.2 Mean-Flow Surface Measurements & Computations

The mean-flow surface measurements were obtained with the use of the model's

internal instrumentation. Surface pressure and temperature distributions for the flared-cone

at angle of attack are presented in the following sections.

3.2.1 Pressure Distributions

The measured surface-pressure distribution for the o_= 0 ° baseline case is plotted in

Fig. 3.6. Overlaid on this plot are the Navier-Stokes computations for the o_= 0 ° and 0.2 °

cases. Pressures were measured at two locations on the constant-pressure cone region.

The upstream data point falls close to the {z = 0.2 ° leeward computations; conversely, the

other data point falls above the {z = 0.2 ° windward computations. This contraindication

illustrates the difficulty encountered in determining actual model alignment from surface-

pressure data. Because each pressure is measured independently, however, unique

characteristics of the hydraulic connections and transducers can result in a significant bias,

as observed in the present data. Over the flare the measured distribution shows a slightly

higher pressure rise than the laminar computations. This diserepaney may be due in part to

transition onset or the physical alignment of the model.

The o_= 2 ° pressure distributions are plotted in Fig. 3.7. The measurements show

good agreement with the computations along the cone portion. The measured pressure

along the windward ray falls slightly higher than the computed values. The measured

leeward distribution shows a more significant deviation from the computed laminar trends,

especially over the flare. Towards the base these measurements indicate a larger adverse-
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pressure gradient than that predicted by the computations. This larger adverse-pressure

gradient is due to transition onseL Because of the sparseness of the data the location of

transition onset could not be verified with high precision. Surface-pressure measurements

were not obtained for the ot = 4 ° configuration.

3.2.2 Temperature Distributions

The surface-temperaturedistributionsfor(z= 0°,o:-"2°,and o_- 4°areplottedin

Figs.3.8,3.9,and 3.10,respectively.The surfacetemperature,T, isnormalized by the

freestream stagnation temperature, TO_ The vertical interval between the (T/Tooo) grid

lines corresponds to a temperature change of AT = 16° R. Gradients in the computed

distributions near the tip are artifacts of the singularity in the numerical mesh and are not

physicallysignificanL32The + 2°R precisionofthetemperaturemeasurements

correspondsto+ 0.0025 × TO**forthenormalizedtemperature,which isequivalenttothe

heightoftheplotsymbols.

Navier-Stokescomputationsforthe cc= 0° baselinecase,shown inFig.3.8,

exhibitthefollowingfeatures.Over thecone portionofthemodel the temperatureisfairly

constant.At thecone-flaretangenttheslopeofthetemperaturedistributionincreases

discontinuously.Over theflare,thetemperatureincreasesmoderatelyby about 1.4%. The

estimatedvariationdue tothemodel alignmentisindicatedby theenvelope ofthe(z= 0.2°

computations.The largestvarianceoccursatthetangentwhere thewindward distribution

falls0.5% higher,and theleeward distributionfalls0.4% lower thanthebaselinecase.

The cc= 0°measurements fallwithinthisenvelope up toRcs = 3.8 × 106. Downstream of

this location u'ansition onset is indicated by the large temperature increase. The transition-

onset location is determined to be Res = 4.2 × 106 by the intersection of the asymptotes

extended from the laminar and transitional regions. The development of fully-turbulent

flow represented by a smooth asymptotic distribution downstream of the transitional peak
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is not observed, however. The temperature decrease at the last measurement station may

indicate that transition is nearing completion. Near the base, however, conductive cooling

from the internal model strucULre may also produce a similar effect.

The (z = 2 ° distributions are plotted in Fig. 3.9. Over the cone portion the

computations predict a greater temperature difference between the windward and leeward

rays than that observed in the experiment. In this region, however, the physical

dimensions of the model are small and the windward and leeward rays are strongly

conductively coupled. Such thermal conduction tends to average out temperature

differences between the windward and the leeward rays near the tip. The computed

windward temperature is essentially constant over the cone and increases only 0.8% over

the flare. The windward measurements fall well below the computations near the tip, but

asymptotically approach the computations near the base as thermal conduction with the

leeward ray is mitigated. The small rise in the measurements near the base may be due

either to transition onset or to conduction effects. In contrast, the leeward computations

show a sharp rise in the surface temperature at the tangent suggesting laminar separation.

Separation is not observed in the experiment, however. Conduction effects may somewhat

smooth out the distribution, but not to the extent that such a separated region would be

undetectable. A more likely explanation is that the boundary layer remains attached as a

result of the high-energy flow associated with the pre-transitional boundary layer.

Transition onset is detected from the measured distribution at Res = 3.33 x 105.

Fig. 3.10 shows the c_ = 4 ° results. Strong conduction effects are again observed

as the windward and leeward temperatures have equilibrated near the tip. The windward

measurements follow laminar trends but are shifted by conduction effects. A slight

temperature rise near the base may indicate either transition onset or conduction. The

leeward measurements are relatively constant along the cone and sharply rise at the tangent.
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lust downstream of the tangent, at Res = 2.75 × 106, separation is indicated by the region

of constant temperature. The leeward computations predict separation slightly upstream of

the measured separated region. Separation acts a bypass mechanism resulting in

instantaneous transition to turbulence for this test case.

Closer examination of transition onset for the at = 0 ° baseline and at = 2 ° leeward

cases reveals a smooth increase where transition onset occurs. In contrast, the at = 2 ° and

4 ° windward cases both exhibit a more discontinuous temperature rise near the base. This

observation supports the conclusion that the windward cases remain fully laminar, and

conduction effects are responsible for these observed temperature rises. In addition, the

laminar computations predict separated regions for both leeward cases. However,

separation was detected only for the at = 4 ° leeward case. Conduction effects were not

strong enough to completely dissipate the constant-temperature region in the distribution for

this case. Thus, such a region would also be detectable, if one indeed existed, for the at =

2 ° leeward case. Based on these considerations, one may conclude that the transitional

boundary layer remains attached for the at = 2° leeward test case.

3.3 Schlieren Flow Visualization

A schlieren image of the flow over the base region of the model is shown in Fig.

3.11 for the at = 0 ° baseline case. In this schlieren image the flow is from the left to the

right. The nozzle exit is on the left of the image and the model surface is along the bottom

of the image. The boundary layer appears as a dark band very close to the model surface.

Additional intensity variations are due to the turbulent shear layer and nozzle-exit shock

surrounding the model as well as imperfections in the test-section windows. These

background intensity variations are distinct from the boundary layer on the model. Near

the nozzle-exit plane the edge of the boundary layer is clearly smooth. The local Reynolds
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numberin the nozzle-exit plane was Res = 3.8 x 106 which was within the laminar region.

The observed transition location of Res = 4.2 x 106 corresponds roughly to the middle of

the field of view. Intermit_nt wave-lik_ structures am visibl_ in the transitional boundary

layer closer to the base. The wavelength of these structur_ is approximately twice the

boundary-layer thickness; thus, these boundary-layer disturbances arc attributed to the

second-mode instability. The end of transition and the estab "hshment of fully-turbulent

flow is not apparent in this schtieren image.

Transition was not observed on the windward ray at angle of attack. The schlieren

images shown in Figs. 3.12 and 3.13 verify the laminar state of the boundary layer on the

windward rays for the o_= 2 ° and 4 ° test cases, respectively. The field of view of the

schliercn system was adjusted to visualize the flow over the windward ray located on the

bottom of the modeL In these images the nozzle exit is located on the left, and the model is

now along the top of the image. The boundary layer appears as a bright smooth band along

the bottom of the modeL The nozzle-exit shock and shear layer again contribute to

background intensity variations. Also, the shock induced by the model can be faintly seen

in the lower left as a dark line almost parallel to the model surface. This verifies that the

shock did not reflect inside the test nozzle and impinge on the model surface. The nozzle-

exit shock approaches the base of the model as the angle of attack increases. At a 4-degree

angle of attack, the shock just misses the base of the model.

Transition onset was observed well upstream of the nozzle-exit on the leeward ray

for the t_ = 2 ° ease. The schlieren image for this turbulent case is shown in Fig. 3.14. In

this image the boundary layer on the model is not clearly discernible from the background

intensity variations. Closer inspection of the image near the cone surface reveals

intermittent structures that are slightly more prominent than the background intensity

variations. These features may be attributed to turbulent structures in the boundary layer.
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Theturbulentboundary layer on the leeward ray for the 4-degree case is also difficult to

distinguish from background intensity variations in the schlieren image. Thus, the image

for this test case is not shown here.

3.4 Mean-Flow Boundary-Layer Measurements &

Computations

Time-averaged measurements obtained within the boundary layer consist of both

the mean and rms output from the CVA system. The mean prof'fles provided a basis for

estimating the boundary-layer thickness. Also, the rms output is a measure of the flow-

disturbance energy. The unealibrated CVA-output voltages were arbitrarily normalized and

scaled for the mean and rms prof'de plots presented below.

3.4.1 Boundary-Layer Thickness

The mean output is plotted in Fig. 3.15 against the surface-normal distance,

indicated by Y, at several streamwise locations for the (z = 0 ° baseline case. The profile

shape, which is primarily dependent on mass flux, does not appreciably change in the

laminar region. Downstream of transition onset, Res = 4.2 x 106 for this case, the mean-

pro/fie shape broadens. The measured 8 distribution is shown in the Y-Res plane of this

3-D plot. The 5 measurements are plotted in Fig. 3.16 with Navier-Stokes computations

for the (_ = 0 ° and 0.2 ° cases. The computations show conical boundary-layer growth up to

the tangent. The adverse-pressure gradient retards boundary-layer growth over the flare,

however. The measurements fall within the envelope of the (z = 0.2 ° computations over the

most of the flare. Also, the (x = 0 ° computations fall within the precision of the

measurements indicated by error bars in the ploL The experimental data do fall slightly

below the computations at the upstream locations. This discrepancy indicates that the

model was aligned at a slight windward angle. Additionally, transition onset is indicated
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by the increase in 8 near Res = 4.2 x 10 6, contrary to the decreasing trend of the laminar

computations.

Mean profiles for the _ = 2 ° and 4 ° windward cases arc shown in Figs. 3.17 and

3.18, respectively. Both of these cases follow similar trends. The profile shape does not

appreciably change in the streamwisc dircc6on. Also, the measured 8 estimate remains

fairly constant with the exception of some experimental scatter. The 8 measurements are

plotted with Navier-Sto_s computations in Fig. 3.19. The increased pressure level on the

windward ray further suppresses boundary-layer growth over the cone relative to the

baseline case. Over the flare 8 remains constant, as opposed to the d_reasing trend in the

baseline case. These measurements do not show any indication of transition onset for

eitherwindward cam. The measured 8 failsslightlyhigherthanthe computations.This

outward biasisdue inparttothesparsenessofthe raw dataand theapplicationofthe

smoothing-splinefit.

The ot= 2° and 4°leeward mean profilesare shown inFigs.3.20 and 3.21,

respectively.These cams exhibitthe followingtrends.The upstream profileshave a

laminarshape with awell-definedboundary-layeredge. However, as theprofileevolves

downstream theshape fillsout and theedge fallsbeyond theY-range overwhich hot-wire

measurements were obtained.The fullershaperepresentsincreasedmass-fluxlevelscloser

tothesurfacewhich arecharacteristicofturbulentboundary layers.

3.4.2 Disturbance-Energy Profiles

The disturbance-energyprofiles,representedby theCVA-rms output,forthe ot= 0°

baselinecam am plottedinFig.3.22. These profilesshow a localizeddisturbance

developing withintheboundary layer.Downstream oftransitiononset,Res = 4.2 x 106

forthiscam, the localizeddisturbancegrows inenergy and broadens inextent.The Y

locationswhere flow disturbanceshave a peak amplitude,indicatedby thecircularplot
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symbols at the rms maxima in the figure, correspond to the most-unstable locations in the

boundary layer. To illustrate this correspondence the loci of the rms maxima are plotted

with the generalized-inflection point, Ygip, distributions for the cz = 0 ° and 0.2 °

computations in Fig. 3.23. The computed distributions are somewhat affected by errors

due to interpolation from the discrete mesh, but remain within the prex-_on of the

measurements.

Rms prof'des for the ¢c = 2 ° and 4 ° windward cases are shown in Figs. 3.24 and

3.25, respectively. In the a = 2 ° case, the rms profiles have two maxima. The peak closer

to the boundary-layer edge is attributed to the disturbances at the generalized-inflection

point. The peak closer to the surface results from the increased sensitivity of the hot-wire

sensor under decreased mass-flux conditions. This secondary peak is also apparent to a

lesser degree in the a = 4 ° windward case. Both cases show that the disturbance energy is

confined to a small region within the boundary layer. As previously documented by mean

prof'des and surface measurements, flow disturbances have not grown sufficiently to

significantly alter the laminar mean flow for the windward cases.

In contrast with the windward laminar cases, the rms profiles for the o_= 2 ° and 4 °

leeward cases are shown in Figs. 3.26 and 3.27, respectively. The oc = 2 ° case illustrates

the evolution of the flow disturbances through the transition process. Initially laminar, the

localized disturbance is confined to the vicinity of the generalized-inflection point. This

localized disturbance quickly spreads within the boundary layer, however, and grows

substantially in the downstream direction. The upstream prof'de for the a = 4 ° case shows

a more widespread disturbance, which is expected for this turbulent case.
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3.5 Boundary-Layer Stability Measurements

The stability measurements obtained from the time-series hot-wire data are

presented below. First, the o_= 0 ° baseline case is presented, followed by the windward

and leeward test cases. The flow-disturbance power spectra at the maximum-energy

locationsareexamined atseveralstreamwisestationsto determinethedevelopment of

individualdisturbancemodes. Also, facility noisein the 0-50 kHz band ismonitored to

determine what effect these freestream disturbances may have on the stability

measurements. The power spectra of the electronic noise in the CVA system is plotted in

Fig. 3.28. This shows the typical shape of the noise floor above which flow-disturbances

must rise to be detectable.

3.5.1 _ = 0 ° Baseline Case

Power spectraforthiscase areplottedinFig.3.29. The normalized power, P/P0,

is plotted on a decibel scale along the vertical axis against the frequency, F, for each

streamwise measurement location, Res. At the most-upstream location flow disturbances

are small, and the measured signal consists primarily of electronic noise. Downstream,

boundary-layer disturbances are detected around 266 kHz. Another significant disturbance

falls within the 0-50 kHz band of the facility noise centered around 15.6 kHz. The

normalized amplitude spectra, ln(AJA0), are plotted in Fig. 3.30. Plotting the spectra in

this form shows more clearly growth in the frequency band of the sub harmonic of the 266-

kHz disturbance, around 133 kHz. Also, disturbance growth is detected for higher-order

harmonics of the 266 kHz disturbance at 531 kHz and 797 kI-Iz. The appearance of these

frequency-coupled disturbances suggests the onset of non-linear disturbance interactions.

Detection of these higher-frequency disturbauees is unexpected, however, for the foUowing

masons. Not only do these harmonics fall well beyond the reported frequency response of
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the CVA system, 26 but also these unstable disturbances are not predicted by LST

computations. 32

The second-mode frequency estimates based on the present Navier-Stokes

computations are overlaid on an image of the ln(A/A0) data in Fig. 3.31. The frequency is

along the vertical axis, and the location, indicated by Res, is along the horizontal axis.

Both the (z = 0 ° baseline and the o_= 0.2 ° windward and leeward computations are shown

with the o_= 0 ° measurements. The levels of measured growth are indicated by the color

map on the fight of the figure. Selected N-factor contours are also superimposed to

highlight the weaker harmonic disturbances. The computed frequency for the second-mode

disturbance remains fairly constant over the flare and falls within 2% of the measured 266-

kHz frequency at the base. The 266-kHz disturbance is thus identified as a second-mode

disturbance.

Amplification-rate spectra, -c_i vs. F, are plotted in Fig. 3.32 for five streamwise

locations from Res = 2.6 x 106 to 4.5 x 106. Electronic noise inhibits the detection of

disturbance amplification at the upstream locations. Downstream, however, significant

amplification is observed around the 15.6-kHz and 266-kHz frequency bands. These

bands are attributed to the facility noise and the second-mode disturbance, respectively.

Harmonics of the second-mode disturbance are amplified to a lesser degree at 133 kHz,

531 kHz, and 797 kHz.

Amplification-rate distributions, -oq vs. Res, for the second-mode disturbance, the

above harmonically-related disturbances, and the facility noise are plotted in Fig. 3.33.

The facility noise experiences two regions of amplification which reach peak values around

Res = 3.3 x 106 and 3.9 x 106. The downstream peak coincides with that of the second-

mode disturbance. Small levels of sub-harmonic amplification are detected downstream of

Res = 3.5 × 106. The first and second harmonics of the second-mode disturbance show
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peakamplificationatRes = 4.1 x 106 and 4.3 × 106, respectively. Transition onset was

also detected in this vicinity, at Res = 4.2 x 106, from surface-temperature measurements.

The most-amplified of the second-mo_ harmonics is the second harmonic at 797 kI-Iz

whose peak-amplification rate is greater than twice that of the first harmonic and the sub

harmonic.

N-factordistributions,(N-No) vs.Rcs,areplottedfortheaefre_luenciesinFig.

3.34. Facility noise grows slowly and reaches a plateau around Res = 3.5 x 106. Slightly

downstream at Res = 3.65 x 106 facility noise as well as the second-mode and sub-

harmonic disturbances experience linear growth. In this region, the growth of the facility

noise and the second-mode disturbance grow at the same rate. Sub-harmonic growth

occurs at a much slower rate as indicated by the slope of the 133-kHz distribution. A small

amount of growth of the second-mode harmonics is observed downstream of transition

onset. The first harmonic grows at a slower rate than the second harmonic, however.

Fig. 3.35 shows the N-factor distributions for the second-mode disturbance

measured at 266 kHz and for the LST-based computations of Balakumar and Malik32 for

the most-unstable disturbance at 220 kHz. The measured N-factor growth of the second-

mode disturbance remains essentially linear, consistent with linear stability theory. The

measured distribution was previously plotted in Fig. 3.34 as the difference, N - NO, where,

NO is then factor at the location where disturbance growth is initially detected. The value

of NO = 6.5 was determined from the LST computations. Electronic noise obscures the

second mode from the most-upstream location up to Res = 3.65 x 106 for this case.

Downstream of this location, facility noise in the 0-50 kHz band does not inhibit detection

of the 266-kHz disturbance. The 20% discrepancy between the measured and computed

frequencies is due to the f'mite windward alignment angle of the test model. Beyond

transition onset at Res = 4.2 x 106 the slope of the measured N-factor distribution levels off
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slightly. The deviation from linear growth may be accompanied by non-linear inwractions

with the second-mode harmonics. To determine if these non-linear phase coupling effects

were present in the experiment the bispectrum was examined.

The bispectrum magnitude, IB(F1,F2)I, is plotted as an image in Fig. 3.36 for the

most-downstream measurement location, Res = 4.5 x 106. The F1 and F2 frequency axes

are normalized by the second-mode frequency, F2ad Mode = 266 kHz, to facilitate

identification of harmonically-related disturbances. An arbitrary logarithmic scale was used

for the magnitude color map. Regions of deterministic phase coupling are indicated by

localized peaks in the bispectrum magnitude. The diagonal line described by F2 = F1 is a

line of symmetry, and the two regions on each side of this line contain identical

information. Examining the triangular area along the vertical axis, phase coupling is

observed for the following disturbances. The dark region where F1 = 266 kHz and 1=2=

266 kHz indicates that the first harmonic at F3 = (F1 + F2) = 532 kHz is phase coupled

with the second-mode disturbance. Also, where F1 = 266 kHz and F2 = 531 kHz the

bispectrum shows phase coupling of the second harmonic at F3 = 797 kHz with both the

second mode and the first harmonic. A small degree of phase coupling is also observed

along the line F1 + F2 - F2nd Mode, where constituent disturbances are also frequency-

coupled with the second mode. This line intersects the line of symmetry at the point F1 =

F2 = 133 kHz, indicating some degree of phase coupling of the sub harmonic with the

second mode.

3.5.2 (x = 2 ° Windward Case

Power spectra are plotted in Fig. 3.37. The most-upstream spectrum looks very

similar in shape to the electronic-noise spectrum. Two distinct peaks, however, develop

downstream. The low-frequency peak is identified as facility noise in the 15.6-kHz band.

The other disturbance is centered at 379 kHz. The normalized amplitude spectra are plotted
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in Fig. 3.38. This plot shows more clearly growth in the region of 50-200 kHz that was

obscured by electronic noise in the power-spectra plot. The computed second-mode

disturbance frequency under predicts the measured frequency by 11% as shown in the

composite plot in Fig. 3.39. The discrepancy between these measured and computed

frequencies is due both to the limited precision of the model alignment and to the limited

accuracy of the X = 28 approximation on which the computed estimate was based.

Nevertheless, the 379-kHz disturbance is attributed to the second mode.

At the most-upstream location, Res = 2.7 x 10 6, significant amplification of the

facility noise is observed in the amplification-rate spectra plotted in Fig. 3.40. At Res = 4 x

106 and 4.5 x 106 the second-mode, 379-kHz disturbance is also amplified. The 50-200

kHz band is amplified to a lesser extent. The amplification-rate distributions of individual

disturbance modes are plotted in Fig 3.41. Facility noise is tracked by the 15.6-kHz and

44.9-kHz modes. This noise is greatly amplified at the upstream measurement stations and

moderately amplified downstream. The 143-kHz disturbance is representative of the 50-

200 kHz band. This band experiences moderate levels of amplification over most of the

flare which are slightly larger than those observed in this band for the zero-degree baseline

case. Initial amplification of the second-mode, 379-kHz disturbance is detected just

upstream of Res = 4 x 106. A peak-amplification rate is reached and starts to decay near

the end of the model The peak-amplification rate of the second-mode disturbance is

significantly less than that observed in the baseline case, however. Slight amplification of

the second-mode sub harmonic, indicated by the 189-kHz distribution, is observed near the

base of the model.

The growth of these modes is illustrated by the N-factor distributions plotted in Fig.

3.42. The facility noise shows substantial growth from the initial location up to Res = 3.5

x 106. Additional facility-noise growth is detected downstream of Res = 3.75 x 106. Near
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this second region of growth, at Res = 4 x 106, linear growth of the second-mode

disturbance is dete_ted. The low-frequency band repre_nted by the 143-kHz mode shows

linear growth over the entire flare region but at a much slower rate than the second-mode

disturbance. Measured growth of the sub harmonic is not significant.

The image of the bispectmm magnitude at Res = 4.5 x 106, plotted in Fig. 3.43,

shows only a slight degree of phase coupling. A band along the line F1 + F2 = F2nd Mode

appearsagain,althoughnotas prominentasinthebaselinecase. Sinceonly moderate

growth of thesecond-mode disturbancewas measured and transitiononsetwas not

detected,strongnon-lineariticsarenot expectedforthiscase. Because significantgrowth

was not detectedforany second-mode harmonics inthepower spectra,localizedphase

couplingwould alsonot be detectedinthebispectrum.

3.5.3 a = 4 ° Windward Case

In additiontofacilityand electronicnoise,thepower spectraplottedinFig.3.44 for

thiscaseshow evidence of intermittentmechanicalresonanceofthehot-wiresensor.

Sporadicpeaks appear at a few streamwise locations but are not characteristic of the

physicalflow. The hot-wiresensorused forthistestcasewas nearthe end ofits

operationallifetimeand,thus,prone tosuch resonanceeffects.However, detectionof the

second-mode disturbanceisnot inhibited,as shown by thenormalizedamplitudespectra

image plottedwith thecomputed second-mode frequencyinFig.3.45. Significantgrowth

isdetectedbothin thefacility-noiseband and inthelow-frequencyband from 50-200 kHz.

Amongst thesporadicresonancepeaks,however, appearsa smoothly growing disturbance

which ischaracteristicofthephysicalflow. This smoothly-growing disturbanceat379

kHz falls3% below thecomputed second-mode frequency.The amplification-ratespectra

plotted in Fig. 3.46 are degraded by the effects of the hot-wire resonance at several

frequencies. There is significant amplification in the facility-noise and low-frequency
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bands. The second-mode disturbance at 379 kHz also shows significant amplification

downstream.

Amplification-rate distributions for frequencies not corrupted by hot-wire resonance

are shown in Fig. 3.47. Facility noise is indicated by the 15.6okHz and 44.9-kHz

distributions,and thelow-frequencyband from 50-200 kHz isrepresentedby the 105-kHz

distribution. The peak-amplification rate of the low-frequency band has increased relative

tothe2-degreewindward case. The facilitynoiseand the 105-kHz disturbanceallreacha

maximum amplificationatRcs = 3.7x 106. At thissame location,amplificationofthe

second-mode disturbanceisinitiallydetected,as indicatedby the379-kHz distribution.

The peak-amplificationofthissecond-mode disturbancehas furtherdecreasedrelativeto

the2-degreewindward case.The sub harmonic, at189 kHz, isamplifiedby a small

amount downstream ofpeak inthesecond-mode amplification.The N-factordistributions

plottedinFig.3.48 show significantgrowth ofthefacilitynoiseaswellas thefollowing

features.Growth of thelow-frequencydisturbanceat105 kHz isdetecteddownstream of

Res = 3.5× 106. Growth ofthe second mode isdetecteddownstream atRes = 3.8x 106

but occursatafasterrate.Measured growth ofthesub harmonic isnot significant.

3.5.4 o_ = 2° Leeward Case

In contrasttothe previouscases,the upstream power spectrum forthiscase,shown

inFig.3.49,bearslittleresemblance tothe electronic-noisespectrum. Significantflow-

disturbancegrowth has alreadyoccurredpriortothemost-upstreammeasurement location.

Initially,flow disturbancesareprimarilyconfinedtothefrequencyrange0-200 kHz. A

peak-power disturbanceisinitiallydetectedat141 kHz, butsubsequentlydispersesintoa

more broad-band disturbancedownstream. Spectralbroadeningisalsoillustratedby the

normalizedamplitudespectrainFig.3.50. Here, measured growth isinitiallyrestrictedto

the0-200 kHz band. Downstream, however, growth isobserved overa wider band up to
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600 kHz. Near the base the rate of growth decreases, indicating saturation takes place. A

composite plot of the computed second-mode frequency and the amplitude-spectra data is

shown in Fig. 3.51. The computed frequency is about 45 kHz at the base. This mode is

not clearly identified from the specU'a due to the broad-band character of the flow

disturbances. In addition, the second mode is obscured because its frequency falls within

the 0-50 kHz facility-noise band. However, the initial peak-power disturbance falls within

the 50-200 kHz band and, thus, is not associated with the second mode.

Amplification-rate spectra, plotted in Fig. 3.52, confn'm that the most-unstable

disturbances fall below 200 kHz at the initial upstream location. At downstream locations,

the higher-frequency disturbances from 200-600 kHz experience a moderate increase in

amplification indicating that spectral broadening is taking place. Araplification rates decay

to negligible values at the final streamwise location as saturation occurs. Facility noise is

again represented by the 15.6-kHz and 44.9-kHz disturbances for the amplification-rate

and N-factor distributions presented in the following. Also, the 50-200 kHz band is

represented by both the 60.5-kHz and 141-kHz distributious. The development of the 449-

kI-Iz disturbance is characteristic of the high-frequency band from 200.600 kHz.

Amplification-ratedistributionsof theabove representativemodes areplottedin

Fig.3.53. Amplificationofthefacility-noiseand low-frequencymodes remains significant

up toRcs = 4 × 106. Amplificationof the 141-kHz disturbancedecaysquickly,however,

and iseven attenuatedinthevicinityofRes = 3.6× 106. Here, attenuationisnot attributed

to linear damping but rather to non-linear disturbance interaction. This non-linear

interaction is demonstrated by amplification of the 449-kHz, representative disturbance. As

the 141-kHz dominant mode is attenuated, the 449-kHz mode is amplified. This reveals an

amplification shift from the 50-200 kHz band to the 200-600 kHz band, an indication of

non-linear frequency leakage.
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N-factor distributions, plotted in Fig. 3.54, illustrate linear growth and subsequent

non-linear saturation of the representative modes. For the 141-kHz, 60.5-kHz, and

facility-noise modes the initial growth is approximately linear. The 141-kHz disturbance,

however, saturates at the wansition-onset location, Res = 3.33 x 106. Downstream, at Res

= 4 x 10 6, the low-frequency and facility-noise modes saturate. These saturated modes

stimulate growth of higher-frequency disturbances, represented by the 449-kHz mode.

The 449-kHz distribution shows steady continuous growth downstream of the transition-

onset location.

The coincidence of the saturation point of the 141-kHz disturbance and the

transition-onset location suggeststhat this mode is the dominant instability mechanism.

Since this frequency falls much higher than the computed second-mode frequency and the

approximate range of fL_t-mode disturbances, the dominant mode must be attributed to a

different physical mechanism. Another possibility for the dominant mechanism on the

leewardray isthecross-flowinstability.Thisinstabilitymay arisewhen thevelocity

component normal to the edge velocity reaches a maximum value within the boundary

layer. 38 The origin of this instability for the flared-cone model is illustrated by the surface

streamlines and velocity vectors shown in Fig. 3.55 obtained from Navier-Stokes

computationsfortheoc= 2°configuration.The angleof attack,_ shown intheX-Z plane

isgreatlyexaggeratedforclarity.The diametricallyopposing windward and leeward rays

are indicated in the figure. Surface streamlines were actually evaluated on the K = 2

surface from the numerical mesh since the K = 1 surface is a no-slip boundary. These

laminar computations predict a small separated region along the leeward ray, just

downstream of the tangent. Separation was not observed in the cc = 2 ° leeward ease,

however. Velocity vectors at an arbitrary location along the lateral meridian in the X-Y

plane, at X = 5", which corresponds to Res = 1.17 × 106 and is referred to as point A, are
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shown in a detailed view in the figure. Looking directly upstream from the point of view

indicated the model surface is on the right and the farfield boundary is on the left. The

undisturbed freestream velocity indicated by the circles is in the outward direction, normal

to the plane of the paper. Across the shock the velocity is deflected away from the surface.

Within the boundary layer the velocity decreases and changes direction to follow surface

streamlines around the modeL The peak in the cross-flow velocity is readily apparent in

this vector plot. Disturbances originating from this instability propagate along local

streamlines from the windward ray towards the leeward ray. Thus, the dominant instability

on the leeward ray was attributed to a cross-flow type of instability, however, no direct

measurement of the frequency of such a cross-flow disturbance was obtained.

Fig. 3.56 shows the image of the bispectrum magnitude at transition onset, Res =

3.33 × 106. The frequency axes are normalized by the frequency of the cross-flow

disturbance, FCross Flow = 141 kI-Iz. Although the cross-flow disturbance is at its

maximum amplitude, the spectrum is fairly broad band at this location. The bispeclrum

shows a very small amount of broad-band phase coupling in the low-frequency band. The

absence of strong phase coupling in localized bands indicates that disturbances are random

and chaotic. However, a slight degree of localized phase coupling is observed along the

line F1 + F2 = FCross Flow. This localized band is much less distinguished, however, than

the similar features observed in the cz = 0 ° baseline and o_= 2 ° windwardcases.

3.5.5 (z = 4 ° Leeward Case

Separation was detected from surface-temperature measurements for this case. The

following measurements are therefore presented to illustrate the development of turbulent-

flow disturbances through the bypass-transition process. Power spectra plotted in Fig.

3.57 show the last stages of spectral broadening taking place at the most-upstream

locations. Distinct peaks are detected at 15.6 kHz and 82 kHz which fall within the 0-50
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kHz facility-noise and the 50-200 kHz low-frequency bands, respectively. The peak-

power disturbance is at 141 kHz, which may have saturated upstream of the initial

measurement location. These distinct peaks coalesce downstream as the spectnma

broadens. The image of the normalized amplitude spectra, shown in Fig. 3.58, does not

clearly identify the second mode. The computed second-mode frequency is around 28

kHz, which falls within the facility-noise band. Growth is measured in the facility-noise

and low-frequency bands as well as in the 200-600 kHz band to a lesser extent. The

saturated 141-kHz disturbance does not grow any further in the streamwise direction and

appears as a narrow-band horizontal stripe in this image. Amplification-rate spectra are

plotted in Fig. 3.59. At Res = 2.6 x 106 amplification is observed in the facility-noise band

and in the high-frequency hand from 200-600 kHz. The 141-kHz disturbance is attenuated

at this location as a result of growth saturation. At downstream stations amplification

becomes negligible. As in the cz = 2° leeward case, the dominant disturbance is the 141-

kHz mode which is also attributed to a cross-flow type of instability mechanism.

Amplification-rate distributions of discrete modes are plotted in Fig. 3.60. The

facility noise is again representod by the 15.6-kHz mode. The estimated second-mode

disturbance frequency, indicated by the 27.3-kHz distribution, falls within the facility-noise

band. Disturbances within the 50-200 kI-Iz band are indicated by the 82-kI-Iz and 141-kHz

distributions. In addition, the 200-600 kI-Iz band is represented by the 449-kHz mode.

With the exception of the 141-kHz disturbance, the largest amplification occurs at the most-

upslream measurement station. The saturated 141-kHz disturbance is initially attenuated.

Downstream ofRes = 3 x 106 flow disturbances experience small levels of amplification.

The net growth is illuslrated in the N-factor distributions shown in Fig. 3.61. The 82okI-Iz

and 141-kI-Iz modes show negligible growth as both remain fairly constant over the flare

confronting that saturation has taken place prior to the initial measurement station.

46



Saturation of the high-frequency 449-kHz mode is observed slightly downstream at Res =

3 × 10 6. The facility noise continues to grow moderately and finally saturates near the

base.

3.6 Summary of Angle-of-Attack Effects

The above stability and transition data as well as the dominant-instability

mechanisms which lead to transition are summarized below. The presentation of results is

then concluded with a discussion of the angle-of-attack effects on the boundary-layer

stability diagram.

3.6.1 Stability & Transition Data

The stabilityand transitiondataarelistedinTable 3.1.The local Reynolds number

is listed for the locations where maximum amplification, transition onset, and growth

saturation were observed. In Fig. 3.62. local Reynolds numbers normalized by the

transition-onset Reynolds number at ct = 0 ° are plotted against the ratio of the angle of

attackto the cone half angle, O_ne = 5°.Thus, on the horizontalaxis,2° and 4°are

indicated by 0.4 and 0.8, respectively. A positive value refers to the windward ray, and a

negative value represents the leeward ray. The Reynolds numbers at the first and last hot-

wire measurement stations are indicated by the dashed and dashed-dotted lines,

respectively. Plot symbols that fall outside the measurement region indicate approximate

locations. For the zero-degree baseline case transition onset is preceded by the maximum

amplification of the dominant disturbance, labeled Maximum I-oql on the plot. Growth

saturation, indicated by the Maximum (N-N0) symbol, was not observed within the

measurement region, thus, the exact location is unknown.

Transition onset is delayed for both windward cases. Transition and saturation

were not observed in these cases, but the maximum-amplification point demonstrates the
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asymptotic stab'flizing trend. The stabilizing effect is somewhat reduced for the 4-degree

windward case. Transition onset shifts upstream for the leeward cases, relative to the

baseline ease. For the 2-degree leeward case transition onset is also accompanied by

saturation. This coincidence suggests that the combined effects of adverse-pressure

gradient and angle of attack accelerate the process of non-linear breakdown for the

dominant instability on the leeward ray. Transition onset for the 4-degree leeward case was

determined by the measured separation point. Here, separation provides the bypass

mechanism for instantaneous transition to turbulence. However, maximum amplification

and saturation of the dominant disturbance occurred upstream of the measured separation

location. Thus, the natural-transition process had progressed significantly prior to the

observed separation point.

3.6.2 Dominant-Instability Mechanism

Present computations show that angle of attack has an asymptotic effect on the

second-mode disturbance frequency. This effect is graphically illustrated in Fig. 3.63

where the frequency normalized by the (z = 0 ° value are plotted versus the normalized angle

of attack. However, the second-mode disturbance is not the dominant-instability

mechanism in all test cases. Dominant instabilities observed in the leeward cases were

attributed to a cross-flow type of instability and are indicated as such on the plot. The

dominant disturbance frequency was 141 kHz for both the leeward cases. The facility-

noise floor delineates the 0-50 kHz band in which flow disturbances were not uniquely

identified in the experiment. The a = +4 ° cases followed similar trends as the (_ =-+-2 °

cases, thus stability diagrams are presented in the following section only for the (x = 0 ° and

:P.2° cases.
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3.6.3 Stability Diagrams

A stability diagram consists of amplification-rate contours which idendfy the

regionsof disturbancefrequenciesand spatiallocationsthatarestableand unstable.Inthe

stableregionflow disturbancesareatwnua_d and -(zi< O. The unstableregionisthe

regionwhere -ai> 0 and disturbancesarcamplified.The neutral-stabilitycurveseparates

these two regions and is equivalent to the amplification-rote contour where -ai = 0. The

present stability diagrams were constructed by plotting the measure_ amplification-rate data

as an image with F vs. Res. All regions where -(zi < 0 in the measured stability diagram do

not necessarily correspond to stable regions of the theoretical stability diagram, however.

Such discrepancies between measured and theoretical stability diagrams are nonetheless

expected for the following reasons. Amplification is not detectable until the flow-

disturbance signal exceeds the noise level in the hot-wire anemometry system. Thus, initial

regions of amplification were not experirnentaUy detectable. Additionally, in some cases,

downstream regions of apparent neutral stability were attributed to non-linear processes

such as saturation and mean-flow distortion, i.e., transition onset. In spite of these

limitations, however, the measured stability diagrams are a useful tool in graphically

illustrating angle-of-attack trends.

The stability diagram for the (x = 0 ° baseline case in the frequency range 0-500 kHz

is shown in Fig. 3.64. Most-unstable regions are indicated by the areas in the image where

-cci has largest values which are denoted by the color map levels on the right of the plot.

The facility-noise and second-mode disturbances in the 0-50 kHz and 266-kHz bands,

respectively, are the most-unstable disturbances. Narrow-band harmonics of the second

mode at 532 kHz and 797 kHz, not shown on this diagram, were also amplified.

Amplification in the 50-200 kI-tz band is also detected. Fig. 3.65 shows the stability

diagram for the (x = 2 ° windward case. The 379-kHz second-mode disturbance is dearly
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seen.Moderate amplification is again apparent in the 50-200 _ band. Amplification of

the facility noise is shifted upstream because the physical location of the model within the

test nozzle varies with anglo of attacL Broad-band disturbances arc apparent in the stability

diagram of the _ = 2 ° leeward case, shown in Fig. 3.66. Non-linear saturation of the 141-

kI-Iz dominant disturbance attributed to a cross-flow type of instability is indicated by the

region where -cziffi 0 at Res ffi 3.33 x 106. The maximum-amplification point of this

disturbance occuned upstream of the initial measurement station.

A combined stability diagram is shown in Fig. 3.67 for the cx = +2 °, 0 °, and -2 °

cases. Amplification-rate contours arc plotted in the range -_i= 4-9 x 10 -3. These contour

levels were chosen to highlight the maximum-amplification point of the dominant

instabilities. Although the neutral-stability curve was not accurately determined, the

maximum-amplification point is also a significant feature of the stability diagrams. This

composite plot clearly demonstrates the angle-of-attack effects on both the frequency and

the region of amplification for the dominant instabilities, with respect to the cz -0 ° baseline

case. For the windward case the frequency increases by 43%, and the Reynolds number at

maximum amplification is shifted downstream by 9.4%. In contrast, the maximum-

amplification Reynolds number is shifted upstream by 40% for the leeward case, and the

frequency decreases 47%. Because the angle-of-attack effects are asymptotic, the a = + 4 °

cases are essentially coincident with the (z = + 2 ° cases and are omitted for clarity.

50



4 Concluding Remarks

The first investigation of angle-of-attack effects on the stability of the hypersonic

boundary layer on a conical model in a low-disturbance facility has been conducted. The

experiments were performed in the Nozzle-Test-Chamber Facility at NASA Langley

Research Center. The 5 ° half-angle flared-cone model remained within the low-noise

tmiform-freestream envelope of the Mach-6 Axisymmetric Quiet Nozzle for the 0 °, 2 °, and

4 ° angles of attack investigated. The freestream Mach number for the present tests was

= 5.91 and the freestream Reynolds number per unit length was Re/1 = 2.82 x 106 ft d.

Laminar-flow solutions were obtained from Navier-Stokes computations to model the mean

flow over the flared-cone geometry. The adverse-pressure gradient was documented with

surface static-pressure measurements. Transition onset was detected with surface-

temperature measurements. The state of the boundary layer was verified by schlieren flow

visualization. Constant-voltage anemometry diagnostics were applied to obtain both mean-

flow and stability data from a series of point measurements with a single-component, hot-

wire probe. Amplification rates and growth factors of normal-mode disturbances within

the boundary layer were measured. Higher-order spectral analysis was applied to detect

non-linear disturbance interactions.

4.1 Summary of Results

Significant f'mdings of the present work are summarized as follows. First, the

effects of the adverse-pressure gradient on the flared-cone model at a zero-degree angle of

attack are discussed. Then, the effects of angle of attack are summarized. Finally, the
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effects of facility noise on the stability and transition measurements in the low-disturbance

wind umnel are addressed.

4.1.1 Effect of Adverse-Pressure Gradient

Transition occurred at a Reynolds number of 4.2 × 10 6 on the flared-cone model

forthezero-degreeangle-of-attackcase. Incontrast,on straight-walledcones transition

Reynolds numbers may be in excess of 10 x 106. The natural-transition process was

accelerated by the adverse-pressure gradient over the flare. The adverse-pressure gradient

increased amplification rates, relative to a zero-pressure gradient cone, for both fwst and

second-mode disturbances. 32 The adverse-pressure gradient also retarded boundary-layer

growth over the flare. The frequency of the second-mode disturbance decreases with the

increasing boundary-layer thickness on a straight cone. 16 However, the slowly decreasing

boundary-layer thickness over the flare resulted in no significant change in the measured

second-mode frequency in the present tests. The measured location of maximum-

disturbance energy in the boundary layer corresponded to the computed generalized-

inflectionpoint.

The measured rateofgrowth ofthesecond-mode disturbancecompared wellwith

theLST computationsof Balakurnarand Malik32inregionswhere thesignal-to-noiseratio

of thesecond mode was greaterthan 1. A discrepancybetween thepredictedand measured

second-mode frequencieswas attributedtothefinitealignmentangleofthemodel inthe

experiment.Transitiononsetisquicklyfollowedby non-linearbreakdown ofthedominant

second-mode disturbance.Non-linearphase couplingbetween thedominant second-mode

disturbanceand harmonicallyrelateddisturbanceswas observed.The peak-amplification

rate of the second harmonic exceeded twice that of the sub harmonic.
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4.1.2 Angle-of-Attack Results

On the windward ray the following observations were made. The boundary layer

remained laminarover the lengthof themodeL Thus, the transitionReynolds number

exceeded thelengthReynolds number of4.7 x 106. The frequencyofthedominant

second-mode instabilityincreasedrelativetothezero-degreecase,scalingwiththethinner

boundary-layerthickness.Also,growth and amplificationof thesecond-mode instability

were detectedatlargerlocalReynolds numbers. The peak-amplificationrateofthesecond-

mode instabilitydecreasedsignificantlywith increasingangleofattack.Amplificationof

thelow-frequencyband, associatedwith thefast-mode instability,slightlyincreasedwith

increasingtheangleof attack.But,thesedisturbancesdid not grow sufficientlytoinducea

mean-flow distortion.Increasingtheangleofattackfrom 2° to4° didnot measurably

change the frequencyofthesecond-mode instability.

Along theleeward raythefollowingtrendswere noted.Transitionoccurredata

localReynolds number of3.33× 106 forthe2-degreecase. Transitionwas induced by

separationat2.75x 106 forthe4-degreecase,however, significantnormal-mode

disturbancegrowth had occurredupstream oftheobserved separationpoint.The estimated

second-mode frequencydecreasedtowellbelow thefrequencyofthe dominant-instability

mechanisms. The dominant disturbancewas attributedtoa cross-flowtypeof instability

originatingon thesideofthemodel. The frequencyofthedominant instabilityremained

constant as theangleofattackincreasedfrom 2°to4°.The peak-ampll_cation mtc occurred

atlower localReynolds numbers thaninthezero-degreecase.Non-lineargrowth

saturationand spectralbroadeningwere observedinthetransitionaland turbulentregions.

4.1.3 Effect of Facility Noise

Within the low-noisetest volume, disturbancegrowth was measured inthe0-50

kHz facility-noise band. This measured growth corresponded to rising levels of noise in
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the streamwise direction, however, as opposed to normal-mode instabilities. The

occurrence of growth in the facility-noise band did not correlate spatially with the location

of transition onset in any test case. In addition, angle of attack did not affect the overall

measured growth of this band. The shift in location of measured facility-noise growth was

attributed to the change in physical position of the model at angle of attack within the test

nozzle. Furthermore, the low-frequency facility-noise band did not obscure detection of

the high-frequency dominant instability mechanisms. The present higher-order spectral

analysis did not reveal any deterministic phase coupling with the dominant instabilities and

the facility-noise band.

4.2 Conclusions

• Second-mode instabilities dominate the natural-transition process on the flared-cone

model at a zero-degree angle of attack.

• The second-mode frequency is highly sensitive to a small angle of attack. However, the

change in the second-mode frequency with increasing angle of attack is asymptotic.

• The second mode was stab'tlized along the windward ray, but the adverse-pressure

gradient destabilized the first mode.

• Along the leeward ray the estimated second-mode frequency decreased well below the

dominant-instability mechanism band associated with transition.

• Transition on the leeward ray may be due in part to disturbances originating from a cross-

flow type of instability.

• The low-noise disturbance field in the test facility did not prematurely induce transition.
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4.3 Future Work

Recommendations for future work are discussed below in the general areas of

stability experiments, stability computations, and flow visualization.

4.3.1 Stability Experiments

Because the present stability measurements were obtained with a single-component

hot-wire probe, no information about the orientation of flow disturbances was available.

The dominant second-mode disturbances are most unstable when propagating along the

mean-flow direction, but first-mode disturbances are most unstable when propagating at an

oblique angle. The application of multiple-probe correlation techniques recently

demonstrated by Kimmel et al.39 is recommended for providing the detailed information of

the disturbance-field orientation. Additionally, the application of such techniques is

recommended to quantify the influence of fre_tream disturbances on boundary-layer

stability and transition with more certainty. The need for understanding this influence is

illustrated by the following.

For a conical model at angle of attack the second-mode frequency spans a wide

range of values from the windward ray to the leeward ray. Also, first-mode instabilities

and cross-flow instabilities are present. The freestream-disturbance field may interact with

any of these mechanisms. To assess the influence of this interaction on transition

measurements, Reed and Haynes 40 presented transition correlations for regions of cross

flow on a cone at an angle of attack from experiments conducted in both "quief' 9 and

"noisy" 10 wind-tunnel facilities. Recent transition measurements 8 compared well with the

"quiet" correlation in regions of larger cross flow velocities, although these tests were

conducted in a "non-qulef' shock-tunnel facility. The explanation for this unexpected

agreement was given that the facility-disturbance field did not interact with the dominant

cross-flow instabilities on the cone at angle of attack. However, interaction of the facility-
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disturbanc_field with otherinstabilityme_hauismspre.sentin theexperiment in regions

where cross-flow velocities are small was not assessed. With multiple-probe

measurements and the application of spatial and temporal correlation techniques, the

receptivity of the model boundary layer to the freestream-distm'bance field can be quantified

and ulthnately better understood.

4.3.2 Stability Computations

Stabilitycomputationsfortheangle-of-attackconfigurationwere not availableto

identifyspecificallythefirstand second modes. Thus, angle-of-attacktrendswere based

on observationsoftherepresentativemodes which were typicalof normal-mode

disturbancesineach respectivefrequencyband. These angle-of-attacktrendsareuniqueto

theflared-conemodel,however. For example, themaximum amplificationdecreaseforthe

second mode and increaseforthefirstmode on thewindward ray were not observed in

previousstraight-coneangle-of-attackexperiments.19 Therefore,tobetterunderstandthe

combined effectsof angleof attackand adverse-pressuregradienton instabilitygrowth and

thenatural-transitionprocess,a computationalstabilitystudy isrecommended. The

databaseofmeasurements from thepresentstabilityexperimentsconducted ina low-

disturbancewind tunnelaresuitedforvalidationofstabilitytheorycomputationaltools.

Also,stabilitycomputationsareusefulintheinterpretationofstabilitymeasurements.

ApplicationoftheLST-based eN method tothezero-degreeconfigurationhas bccn

previouslydemonstratedby Balakumar and Malilc32 Computational effortforan angle-of-

attackstudycan be reduced considerablyby havinga guide astotherange offrequencies

and locationsover which disturbancesareunstable.7 To thatend,the presentmeasured

stabilitydiagrams can be used assuch a guide injudiciouslychoosing thefrequenciesand

locationsover which stabilitycomputationsareperformed.
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While theoN method iswidely used forstabilitycomputations,significant

streamwise and circumferential variation in the mean-flow over the flared-cone model at an

angle of attack may violate the parallel-flow approximation on which this LST method is

based. However, emerging methods based on the Parabolized Stability Equations (PSE)

have shown promise for modelling the stability of the non-parallel flow over a cone at angle

of attack.41 In addition, the PSE-based method may be used to model certain non-linear

disturbance interactions such as those observed in the present experiments. 42 Based on

these considerations, application of the PSE-based method is also recommended for the

computational stability analysis of the flared-cone geometry at angle of attack. In

performing any of the above stability computations special consideration should be given to

the formulation of a definition of the disturbance N-factor in a three-dimensional non-

parallel flow.

Mean-flow solutions for stability computations may be obtained with one of several

computational tools such as the CFL3D code used in the present work. Discrepancies

observed in the angle-of-attack cases between the computed adiabatic-wall temperature and

the measured surface temperature, however, indicated that thermal conduction effects were

present in the experiment. Stability computations based on such an adiabatic mean-flow

solution would not account for these conduction effects. Application of the measured

steady-state temperature as a boundary condition in the mean-flow computations, however,

would properly simulate the thermal-equilibrium state of the test model Thus, obtaining

measurements of the circumferential temperature distribution is recommended to establish

this boundary condition. Unfortunately, the present measurements were obtained only in

the symmetry plane. To obtain the circumferential measurements the test model must be

rotated about its axis. Rotating the model was deemed damaging to delicate thermocouple

wires and pressure tubing extending through the model sting. The thermocouple wires are
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easily fatigued, and the pressure-tubing connections may leak when over stressed.

Therefore, in order to preserve the integrity of the internal model insmLmentation the

circumferential temperature distribution was not measured in the present angle-of-attack

study.

4.3.3 Flow Visualization

A compilation of earlier studies in which hypersonic boundary-layer instability

waves have been observed in wind tunnel tests was presented by Smith.43 These waves

have been characterized as second-mode disturbances whose wavelength is approximately

twice the boundary-layer thickness. Visualization metho& applied in these studies include

schlieren and shadowgraph photography. These methods integrate density changes along a

collimated light path, thus, no three-dimensional visualization of the instability waves is

currently available. Detailed computations of Pruett and Zang 44 using Direct Numerical

Simulation predicted that the instability wave is a three-dimensional disturbance with

significant circumferential variation. A three-dimensional visualization method is needed

for validation of this numerical result.

One such method suited for three-dimensional visualization of high-speed flows in

wind tunnels is the laser-holographic foeusing-schlieren technique. An improved system

was proposed by Weinstein 45 and first experimentally demonstrated by Doggett and

Chokani 46 in the Supersonic Wind Tunnel Facility at North Carolina State University. The

laser-holographic focusing-schlieren method can record an entire flow field in a single

hologram during the shortoduration pulse of the laser light source. The hologram can then

be used to reconstruct detailed images of the flow in the test section. An original goal of

the present work was to install the laser-holographic focusing-schlieren system developed

at NCSU in the Nozzle-Test-Chamber Facility at NASA Langley. Unfortunately, due to

misalignment during shipment the pulsed laser could not be restored to its peak
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performance during the limited amount of time allotted for this temporary installation.

Future application of the laser-holographic focusing schlieren technique is recommended to

validate the predicted three-dimensional structure of hypersonic boundary-layer instability

waves.
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6 Tables

Table 2.1. Hot-wire probe dimensions

No. dp dq dl

1 0.005 0.028 0.0185

2 0.011 0.027 0.0215

3 0.005 0.025 0.021

I./D

185

215

210

' Notes: All dimensions are in inches except for the dimensionless length-to-
diameter ratio.

Table 2.2. Test cases & measurements

._.4 °

+2°

IY

_2°

.4o

Mean-Flow Mean-Flow Mean-Flow Boundary- Schlieren

Surface Surface Boundary Layer Flow

Pressure Tempe_n_re Layer Stability Visualization

X

X

X

X X X X

X X X X

X X X X

X X X X

X X X X

Notes: x indicates measurement was obtained.
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Table 3.1.

ReTno!ds Numbers at:
Maximum Transition Maximum

Amplification Onset Growth

Stability& wansition data
l ,

Frequency (kHz) of:
McasmvA Computed
Dominant Second-Mode

lnstabili W Instability

+4 ° 4.1 >4.5 >4.5 379 390

+2 ° 4.31 >4.5 >4.5 379 337

0_ 3.94 4.2 >4.5 266 262

-2 ° <2.6 3.33 3.33 141 45

-4° <2.6 2.6 <2.6 141 28

'Notes:A positiveangleofattackdenotesthewindward ray. Local Reynolds numbers are

surfacearclengthand fmestrc.am condition. C.ompu_d sccond-modcf.requencybased on
isbased on the _,= 2 5 approxunauon ana mavlcr-titot:escompumuo .
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7 Figures
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Fig. 2.5. Photograph of the Traverse Mechanism and Hot-Wire Probe Support in the
NTC Facility with the Flared-Cone Model

Fig. 2.6. Photograph of the Short-Strut Mount and the New Mounting Blocks
Designed for the Present Angle-of-Attack Study.
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Fig. 2.7. Photograph ofFlared-ConeModel InstallationwithNew Mounting Blocks

inNTC Facility.
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Fig. 2.8.
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Fig. 3.6.
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Fig. 3.8.

Fig. 3.9.
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Fig. 3.10.
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Fig. 3.11. Schlieren flow visualization for a = 0 ° baseline case.

Fig. 3.12. Schlieren flow visualization for o_= 2 ° windward case.
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Fig. 3.13. Schliercn flow visualization for u = 4 ° windward case.

Fig. 3.14. Schlieren flow visualization for (z = 2 ° leeward case.
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Fig. 3.15. CVA mean-output profiles for (z = 0 ° baseline case.
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Fig. 3.54.
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8 Appendices

8.1 Angle-of-Attack Mounting Blocks

A set of four mounting blocks were designed for the present angle-of-attack

experiments conducted in the NTC. Blocks for both angle-of-attack and sideslip

configurations were constructed to obtain schlieren and hot-wire measurements as

discussed in section 2.1.7 of the Approach chapter. Fig. 8.1 below shows the position of

the model inside the nozzle with both the sideslip and the angle-of-attack mounts for the

maximum 4-degree angle investigated. This figure shows the model located within the

low-noise uniform freestream of the "quiet" nozzle. Three-view drawings for each block

are next shown in Figs. 8.2-8.5.
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8.2 Hot-Wire Coordinate Transformation

This appendix describesthecoordinatetransformationappliedtothereference

contactswitchcoordinatesas explainedinsection2.4.1oftheApproach chapter.The

locationofthecontactswitchwas measured withrespecttothenozzlecoordinatesystem.

The pivotpointoftheangle-of-attackmounting blockswas taken astheorigin.The X

coordinatewas inthedownstream directionalongthenozzlecenterline,and Y was

outward from thecenterlineinthe planeofthehot-wiremeasurements.

First,thelocationof thehotwire was determinedfrom thecontact-switch

coordinatesand theprobe-tipdimensions. The probe-tipdimensions,dp and dq, and the

angle of theprobe arm, 0,which areshown inFig.8.6,determinethiscoordinateshiftas

rsl_t=_(dq cos 0 + dp sin0) i+ (dq sin0 +dp cos 0)j (8.1)

where boldtypefacedenotesa vectorquantity,and iand j representunitvectorsin

theX and Y directions,respectively.The hot-wirelocationinnozzlecoordinateswas then

referencedtothe model coordinatesystem. This procedureisexplainedbelow,but firstthe

model coordinatesystem and geometry aredefined.

The originofthemodel coordinatesislocatedatthesharptipasshown inFig.8.7

where x istheaxialdistancefrom thetipand y isradiallyoutward inthemeasurement

plane.The forebody ofthemodel isa strsight-waUedcone ofhalfangleOcone.The

profile of the aft section is a circular arc of radius rflare. This flared surface is tangent to the

cone at Xtangent, Ytangent. The center of the circular-arc flare is located at Xflare, Yflare as

shown in the figure and evaluated by

Xflare = Xtanggnt" rflaxe $irl Ocone

yaare = Xtansent tan Ocone+ rltare cos Ocon, (8.2)

The arc length along the flare surface is given by the following
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cos Ocon (8.3)

where the reference angle ¢, shown in Fig. 8.7, is given by

_) " C05"1{X " Xflare }raare (8.4)

The local slope of the flared surface is

dy =. (x - 2Cflare)

dx (y - (8.5)

At a zero-degree angle of attack the cone coordinates are related to the nozzle

coordinates by the following

X = Xcxit + x - Xbase + (Xbase - Xexit)

Y =y (8.6)

where Xexit is the nozzle coordinate at the nozzle-exit plane and Xbase is the cone coordinate

at the model base. The axial distance between the model base and the nozzle-exit plane,

(Xbase - Xex/t), was measured with the model mounted in the test section as illustrated in

Fig. 8.8.

The location of the model at an angle of attack can be described by the following.

Let XA, YA represent the nozzle coordinates of a point A on the model surface, xA, YA, at a

zero-degree angle of attack. In polar coordinates this point corresponds to RA,/08.

When placed at an angle of attack, _ point A is rotated to location B in the nozzle, XB, YB,

which is specified by the polar nozzle coordinates RA, ,'0,4 + (1.. The rotated coordinates

are thus given by

XB = RA cos (OA + OL)

YB = RA sin (Oa + o_) (8.7)

The coordinate transformation in Eq. 8.6 requires a value for (Xbase - Xexit).

However, when the model was mounted at an angle of attack the position of the model in

the nozzle was determined by measuring (Xbase - Xexit). Thus, an iterative procedure was

applied to determine a value for (Xbase "Xexit) such that when Xbase was transformed and

116



rotated,viaEqs.8.6and8.7,thecomputed value of Xbase - Xexit matched the measured

value within a specified tolerance.

For a hot-wire measurement point M, (XM, YM), in the boundary layer referenced

to point P, (Xp, Yp), on the model surface the surface-normal distance, h, is evaluated by

h = _/(Xp-XM_ + (YP-YM_. (8.8)

The appropriate location of P is determined by iteration such that the local slope of

the model at angle of attack was normal to the slope of the line between points P and M.

This criterion can be written as

 (xp-xM)! (8.8)

Since the hot-wire measurements were conducted in a horizontal plane, the angle of

attack may also be referred to as the sideslip angle 13.

dq

dp

0

X

hot wire

Fig. 8.6. Def'mition of coordinate shift from contact switch to hot wire.
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